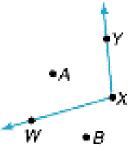

Lesson 3

Glencoe Geometry Chapter 1.6 & 1.7

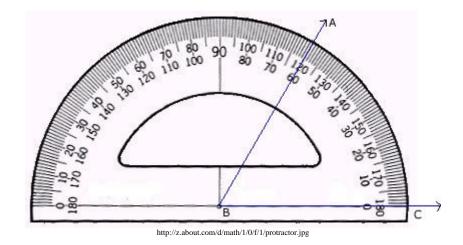
Angles: Exploration & Relationships

By the end of this lesson, you should be ab	ole to
1. Identify angles and	_ angles.
2. Use the Angle Addition Postulate to t	
of angles.	
3. Identify and use congruent angles and	d the
of an angle.	
4. Identify and use special	of angles.
5. Identify your favorite Math television program	
Remember from Lesson 1 that a ray has on extends indefinitely in one direction. For example \overrightarrow{YV} in the figure at right. Since direction matters, \overrightarrow{YV} and \overrightarrow{YZ} are called rays, but they share a commendpoint. Opposite rays are always colline	non Z
An angle is usually formed by two non-col common endpoint. The common endpoint	_
Give some names for the angle at right:	P.
	Q• ✓3

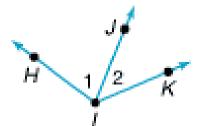

Notice in the last diagram, there was only one angle. You must be more careful when naming different angles that share a common vertex. In the diagram below, you CANNOT name either of the angle as just $\angle B!!!$ What *are* some names?

Angle $\angle ABE$ or $\angle EBA$ is called a _____ angle, since \overrightarrow{BA} and \overrightarrow{BE} are opposites.

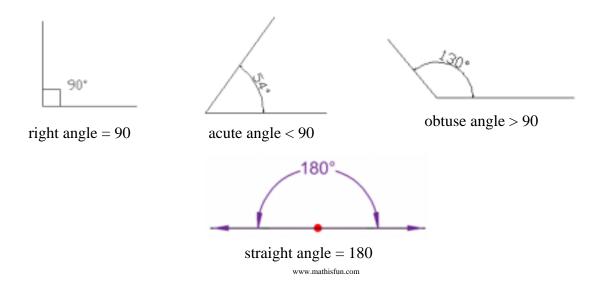
An angle separates a plane into three distinct parts:


- 1. The _____ of the angle.
- 2. The ______ of the angle.
- 3. and the angle itself.

We typically measure angles in _____ using a _____.


*All angles this year will be in degrees. The degree symbol is sometimes used, but without it, we infer that the measure is still in degrees:

$$85^{\circ} = 85$$

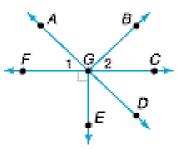

Using the inner scale, we can say that the degree measure of $\angle ABC$ is 60, or equivalently, $m\angle ABC = 60$

By the Angle Addition Postulate, in the figure below, $m\angle HIJ + m\angle JIK = m\angle HIK \dots$ Duhhhh!!

So, what is $m \angle HIJ$ if $m \angle JIK = 45^{\circ}$ and $m \angle HIK = 100^{\circ}$?

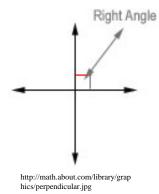
We can also classify individual angles by their measures:

angles have the same measure. Which of the angles above are congruent to all others in the same class?


Two angles that add to 180 are said to be _____ angles.

Two angles that add to 90 are said to be _____ angles.

An angle _____ is a ray that divides and angle into two congruent angles.


Example:

If \overrightarrow{GD} bisects $\angle CGE$, which angle is congruent to $\angle CGD$?

What other angle is congruent to $\angle CGE$?

When two lines intersect, they form four angles. When they intersect to form four right angles, we say the lines are _______, and denoted by the \bot symbol Not all lines are perpendicular to each other, though.

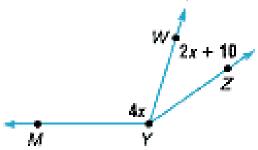
4

2

When two lines intersect, it is useful to classify angles by their relationship to other angles.

Angles—have a common vertex and a common side with no common interior points

Ex)
$$\angle 1 \& \angle 2$$
, $\angle 2 \& \angle 3$, $\angle 3 \& \angle 4$, $\angle 4 \& \angle 1$

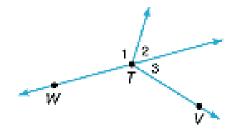

Angles—non-adjacent angles across from each other. Vertical angles are congruent!!!

Ex)
$$\angle 1 \& \angle 3$$
, $\angle 2 \& \angle 4$

Pair—adjacent angles formed by opposite rays. Linear pairs will always be supplements of each other. Which angle above are linear pairs?

Example:

If $m \angle MYZ = 160$, what is $m \angle MYW$?

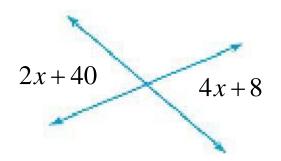


Example:

Name two angles that are adjacent to $\angle WTV$.

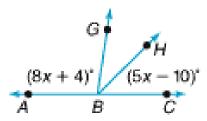
A. $\angle 1$ and $\angle 2$ B. $\angle 2$ and $\angle 3$

C. $\angle WTV$ and $\angle 3$ D. $\angle 1$ and $\angle 3$



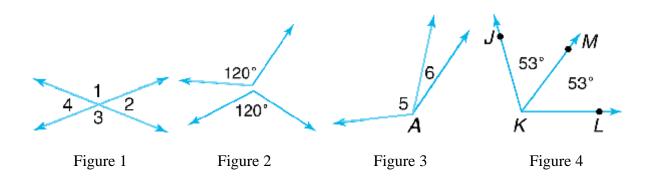
Example:

If $m \angle 1 = 2x$ and $m \angle 2 = 4x$. Find the value of x if $\angle 1$ and $\angle 2$ are complementary.


Example:

Find the value of x.

Example:


If $m\angle ABC = 180$ and x = 12, what is $m\angle GBH$?

Say What??!!

Circle the right Answer:

- 1. Angles are measured in units called (sides) or (degrees).
- 2. In Figure 1, ∠2 and ∠3 are (complementary) or (supplementary) angles.
- 3. A (compass) or (protractor) is used to find the measure of an angle.
- 4. In Figure 2, the two angles shown are (supplementary) or (congruent) angles
- 5. In Figure 3, \angle 5 and \angle 6 are (vertical) or (adjacent) angles.
- 6. Perpendicular lines intersect to form (obtuse) or (right) angles.
- 7. In Figure 3, A is called (a side) or (the vertex) of $\angle 6$.
- 8. In Figure 1, $\angle 1$ and $\angle 4$ form a (linear pair) or (right angle).
- 9. In Figure 4, KM is the (vertex) or (bisector) of $\angle JKL$.

 $[*]unless \ otherwise \ noted, \ all \ images \ are \ created \ using \ TI-Interactive \ Software \ or \ from \ \underline{www.Glencoe.com}$