#### Lesson 13



#### Glencoe Geometry Chapter 5.4 & 5.5

#### The Triangle Inequality

By the end of this lesson, you should be able to

- 1. Recognize and apply relationships between sides and angles in a triangle.
- 2. Apply the Triangle Inequality Theorem

We learned previously that if sides in a triangle were congruent, then the angles opposite those sides are also congruent (and vice-versa).

There are also important relationships that deal with unequal quantities. Today, we will examine two of these relationships.

The first relationship involves the lengths of the sides of a triangle in relation to the triangle's angles.

#### Theorem:

In a triangle, the longest side is across from the largest angle. The shortest side is across from the shortest angle. The "middle" side is across from the "middle" angle.

### **Example:**

Suppose we want to know which side of this triangle is the longest.

В

80

The second relationship involves the lengths of the sides of a triangle.

## Theorem: The Triangle Inequality

The sum of the lengths of any two sides of a triangle must be greater than the third side.

### **Example:**

Suppose we know the lengths of two sides of a triangle, and we want to find the possible lengths of the third side.

While there are other inequality relationships in a triangle, these two relationships are the ones most commonly used. Be sure that you learn these two relationships and you'll be set!

#### RAPID FIRE!!

1. Which of the following could represent the lengths of the sides of a triangle?

A. 1, 2, 3 B. 6, 8, 15 C. 5, 7, 9

2. Two sides of an isosceles triangle measure 3 and 7. Which of the following could be the measure of the third side?

A. 9

B. 7

C. 3

3. In triangle ABC, m<A=30 and m<B=50. Which is the longest side of the triangle?

 $A. \overline{AB}$ 

B.  $\overline{AC}$ 

C.  $\overline{BC}$ 

4. In triangle DEF, an exterior angle at D measures 170, and m<E=80. Which is the longest side of the triangle?

A.  $\overline{EF}$  B.  $\overline{DF}$  C.  $\overline{DE}$ 

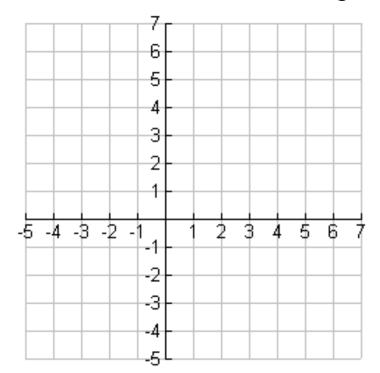
5. In triangle ABC, m<C=55, and m<C > m<B. Which is the longest side of the triangle?

A. AB

B.  $\overline{AC}$  C.  $\overline{BC}$ 

Challenging problems.

In △GHI, m<G=6x-3, m<H=10x+8, and m<I=49-2x.</li>
Which inequality shows the relationship between the lengths of the sides of the triangle?


A. GH>GI>HI

B. GI>GH>HI

C. GH<HI<GI

D. GH<GI<HI

2.  $\triangle$ PQR has vertices at P(-4, 6), Q(4, 5), R(-2, -3). Which angle has the smallest measure?



A. Not enough information

B. < P

C. < Q

D. < R

# Say What??!!

The early Egyptians used to make triangles by using a rope with knots tied at equal intervals. Each vertex of the triangle had to occur at a knot. Suppose you had a rope with exactly 10 knots making 9 equal lengths as shown below. How many different triangles could you make?



| X | y | Z | Triangle? |
|---|---|---|-----------|
| 1 | 1 | 7 |           |
| 1 | 2 | 6 |           |
| 1 | 3 | 5 |           |
| 1 | 4 | 4 |           |
| 2 | 2 | 5 |           |
| 2 | 3 | 4 |           |
| 3 | 3 | 3 |           |

PLAN: Let x, y, and z be the length of each side. Check every possible combination of x + y + z = 9 to see how many can be made into triangles. A table can help us keep track of the combinations.