Lesson 13

Glencoe Geometry Chapter 5.4 & 5.5

The Triangle Inequality

By the end of this lesson, you should be able to

- 1. Recognize and apply relationships between sides and angles in a triangle.
- 2. Apply the Triangle Inequality Theorem

We learned previously that if sides in a triangle were congruent, then the angles opposite those sides are also congruent (and vice-versa).

There are also important relationships that deal with unequal quantities. Today, we will examine two of these relationships.

The first relationship involves the lengths of the sides of a triangle in relation to the triangle's angles.

Theorem:

In a triangle, the longest side is across from the largest angle. The shortest side is across from the shortest angle. The "middle" side is across from the "middle" angle.

Example:

Suppose we want to know which side of this triangle is the longest.

Before we can utilize our theorem, we need to know the size of <B. We know that the 3 angles of the triangle add up to 180.

$$80 + 40 + x = 180$$
$$120 + x = 180$$
$$x = 60$$

We have now found that <B measures 60. According to our theorem, the longest side will be across from the largest angle.

Now that we know the measures of all 3 angles, we can tell that <A is the largest. This means the side across from <A, side CB, is the longest.

The second relationship involves the lengths of the sides of a triangle.

Theorem: The Triangle Inequality

The sum of the lengths of any two sides of a triangle must be greater than the third side.

Example:

Suppose we know the lengths of two sides of a triangle, and we want to find the possible lengths of the third side.

While there are other inequality relationships in a triangle, these two relationships are the ones most commonly used. Be sure that you learn these two relationships and you'll be set!

RAPID FIRE!!

1. Which of the following could represent the lengths of the sides of a triangle?

A. 1, 2, 3 B. 6, 8, 15

C. 5, 7, 9

2. Two sides of an isosceles triangle measure 3 and 7. Which of the following could be the measure of the third side?

A. 9

B. 7

C. 3

- 3. In triangle ABC, m<A=30 and m<B=50. Which is the longest side of the triangle?
 - \overline{A} . \overline{AB}
- B. \overline{AC}
- C. \overline{BC}

- 4. In triangle DEF, an exterior angle at D measures 170, and m<E=80. Which is the longest side of the triangle?
 - A. \overline{EF} B. \overline{DF}

- 5. In triangle ABC, m<C=55, and m<C > m<B. Which is the longest side of the triangle?
 - $A. \overline{AB}$
- B. \overline{AC}
- \overline{C} . \overline{BC}

Challenging problems.

 In △GHI, m<G=6x-3, m<H=10x+8, and m<I=49-2x.
Which inequality shows the relationship between the lengths of the sides of the triangle?

A. GH>GI>HI

B. GI>GH>HI

C. GH<HI<GI

D. GH<GI<HI

2. \triangle PQR has vertices at P(-4, 6), Q(4, 5), R(-2, -3). Which angle has the smallest measure?

A. Not enough information

B. < P

C. < Q

D. < R

Say What??!!

The early Egyptians used to make triangles by using a rope with knots tied at equal intervals. Each vertex of the triangle had to occur at a knot. Suppose you had a rope with exactly 10 knots making 9 equal lengths as shown below. How many different triangles could you make?

X	y	Z	Triangle?
1	1	7	<mark>No</mark>
1	2	6	<mark>No</mark>
1	3	5	<mark>No</mark>
1	4	4	<mark>Yes</mark>
2	2	5	<mark>No</mark>
2	3	4	<mark>Yes</mark>
3	3	3	<mark>Yes</mark>

PLAN: Let x, y, and z be the length of each side. Check every possible combination of x + y + z = 9 to see how many can be made into triangles. A table can help us keep track of the combinations.