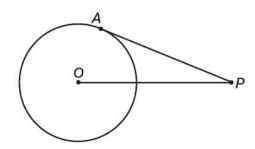

DD7

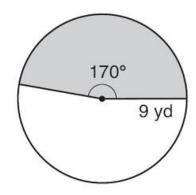
1.


Dolores is on a bridge that is 45 feet above a lake. She sees a boat at a 30° angle of depression. What is Dolores's approximate horizontal distance from the boat?

- A 90 ft
- **B** 26 ft
- C 32 ft
- **D** 78 ft

2.

Point P is 26 centimeters from the center of a circle with a radius of 10 cm.



Find the length of the tangent AP drawn to circle O from point P.

- A 12 cm
- B 24 cm
- C 16 cm
- D 28 cm

3.

The designated fishing area of a circular pond at a park is marked with two ropes attached to a buoy at the center of the pond. Each rope is 9 yards long, and together they form an angle of 170°.

What is the approximate area of the sector that is designated for fishing?

- \mathbf{A} 120 yd²
- \mathbf{B} 140 yd²
- C 134 yd^2
- \mathbf{D} 127 yd²

4.

What is the length of the line segment with endpoints (7, -3) and (-5, 2)?

Record your answer and fill in the bubbles. Be sure to use the correct place value.

0	0	0	0	0	0	0
1	1	1	1	1	1	①
2	2	2	2	2	2	2
3	3	3	3	3	3	3
4	4	4	4	(4)	4	4
(5)	(5)	(5)	(5)	(5)	(5)	(5)
6	6	6	6	6	6	6
7	7	7	7	7	7	7
(8)	8	3	8	8	8	(3)
9	9	9	9	9	9	9

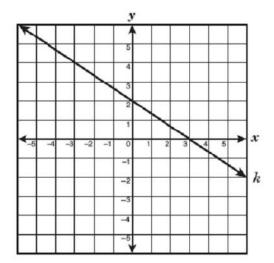
5.

The graph of which function is not congruent to the graph of $y = 2x^2 + 1$?

- $\mathbf{A} \quad y = -2x^2 + 1$
- **B** $y = x^2 + 1$
- C $y = 2x^2 1$
- **D** $y = -2x^2 1$

6.

What is the solution set for the equation $x = x^2 - 42$?


- $A \{-6, 7\}$
- $\mathbf{B} = \{-7, 6\}$
- **C** $\{-\sqrt{42}, \sqrt{42}\}$
- **D** $\{-6\sqrt{7}, 6\sqrt{7}\}$

Mr. Kumar needs \$0.50 to pay for the newspaper. He has 6 dimes, 5 quarters, and 4 nickles in his pocket. If Mr. Kumar reaches into his pocket and randomly takes out 2 coins one at a time without putting either one back, what is the probability that he will select the 2 quarters he needs?

- $\mathbf{A} \quad \frac{3}{5}$
- **B** $\frac{4}{45}$
- $\mathbf{C} = \frac{2}{21}$
- **D** $\frac{13}{21}$

8.

Which equation represents a line perpendicular to line k graphed below?

- **A** $y = \frac{2}{3}x 1$
- $\mathbf{B} \quad y = \frac{3}{2}x 4$
- C $y = -\frac{3}{2}x + 3$
- $\mathbf{D} \quad y = -\frac{2}{3}x + 5$