2

1.

The squares below are arranged in a sequence to produce a geometric pattern.

	2	2	2	2	
2	,	2 2			2
	2	2	2	2	J

Which expression can be used to determine the perimeter of a composite figure made of s squares arranged in this pattern?

- **A** 8s
- \mathbf{B} 8s - 4
- C 4s + 4

2.

Which is the solution to this pair of linear equations?

$$5y - 2x = 6$$

$$3x - 2y = 13$$

- **A** (3, -2)
- (5, -2)
- (7, 4)
- \mathbf{D} (8, -4)

3.

Nikolai has a jar filled with 120 marbles. He has 72 red marbles, 17 blue marbles, 13 green marbles, and 18 purple marbles. What is the probability that he will randomly select a blue marble, without replacement, and then a purple marble from the jar?

- $\mathbf{A} \quad \frac{7}{24}$
- **B** $\frac{3}{140}$
- $\mathbf{C} \quad \frac{17}{800}$
- $\mathbf{D} = \frac{13}{840}$
- Circle Q has a diameter \overline{WY} . Point W is located at (3, -2), and point Y is located at (5, -6). Which of the following ordered pairs represents point Q, the center of the circle?
 - \mathbf{F} (8, -8)
 - G(4,-4)
 - \mathbf{H} (-1.5, 1.5)
 - **J** (3, -6)

5.

What is the approximate distance between points (-7, 2) and (11, -5)?

- A 18.36 units
- B 19.31 units
- C 18.25 units
- **D** 8.06 units

6.

The table below shows the number of line segments that can be drawn between a given number of points.

Number of Points	1	2	3	4
Points	•	•••	Δ	X
Number of Line Segments	0	1	3	6

Which expression can be used to determine the number of line segments that can be drawn between n points?

- $\mathbf{F} = \frac{3}{2}r$
- G n-1
- **H** $n^2 2n$
- $\mathbf{J} = \frac{n(n-1)}{2}$

The square tiles below are arranged to show a pattern.

7.

The square tiles below are arranged to show a pattern.

Which expression can be used to determine the number of square tiles in Stage n?

- **F** 4n + 3
- G = 5n + 2
- **H** $n^2 + 6$
- J $n^3 + 6$