WS 6—Skills 21-25

Directions: For this section, solve each problem and decide which is the best of the choices given. Circle the corresponding capital letter. You may use any available space for scratchwork.

Notes:

- 1. The use of a calculator is permitted.
- 2. All numbers used are real numbers.
- 3. Figures that accompany problems in this test are intended to provide information useful in solving the problems. They are drawn as accurately as possible EXCEPT when it is stated in a specific problem that the figure is not drawn to scale. All figures lie in a plane unless otherwise indicated.
- 4. Unless otherwise specified, the domain of any function f is assumed to be the set of all real numbers x for which f(x) is a real number.
- 1. If the sum of the consecutive integers form -30 to x, inclusive, is 96, what is the value of x?
 - (A) 30
 - (B) 31
 - (C) 32
 - (D) 33
 - (E) 34
- 2. The smallest integer of a set of even consecutive integers is -20. If the sum of these integers is 72, how many integers are in the set?
 - (A) 24
 - (B) 25
 - (C) 43
 - (D) 44
 - (E) 45
- 3. The greatest integer of a set of consecutive integers is 61. If the sum of these integers is 61, how many integers are in the set?
 - (A) 2
 - (B) 61
 - (C) 121
 - (D) 122
 - (E) 125

- 2x 5y = 84x + ky = 17
- 4. For which of the following values of *k* willl the system of equations above have <u>no</u> solution?
 - (A) 10
 - (B) 5
 - (C) 0
 - (D) -5
 - (E) -10
- 5x 2y = 3
- ax + by = 6
- 5. For the system of equations above, the system has <u>infinite</u> solutions. What is the value of
 - $a+\overline{b?}$
 - (A) 6
 - (B) 4 (C) 0
 - (D) -4
 - (E) -6
- 3x + by = 3
- ax 4y = 6
- 6. For which of the following values of $\{a,b\}$ will the system of equations above have <u>no</u> solution?
 - $(A) \{-1,2\}$
 - (B) $\{1,1\}$
 - $(C) \{2,1\}$
 - (D) $\{3, -4\}$
 - (E) $\{6,2\}$

- 7. If x(k-2) = 0 for any value of x, what is the value of k?
 - (A) 0
 - (B) 2
 - (C) 4
 - (D) 6
 - (E) 8
- 8. If $ax^2 + bx + c = 0$ for any value of x, what is the value of a + b + c?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D)3
 - (E) It cannot be determined from the information given.

$$(k+1)x+5=ax+k$$

- 9. If the two expressions above are true for any value of *x*, what is the value of *a*?
 - (A) 6
 - (B) 5
 - (C) 2
 - (D) 0
 - (E) It cannot be determined from the information given.

$$a(x+1)+b(x-1)=2x+4$$

- 10. If the two expressions above are true for any value of *x*, what is the value of *a*?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D)3
 - (E) 4

- 11. In the figure above, the area of the square *A* is 20 and the area of the square *B* is 16. What is the length of a side of the square *C*?
 - (A) 4
 - (B) 6
 - (C) 8
 - (D) 10
 - (E) 36

Note: Figure not drawn to scale.

- 12. In the figure above, $\triangle ABD$, $\triangle ACE$, and $\triangle BCF$ are equilateral triangles, and the ratio of BC to AB is 1:2. If the area of $\triangle ACE$ is 20, what is the area of $\triangle ABD$?
 - (A) 18
 - (B) 16
 - (C) 15
 - (D) 14
 - (E) 12

Note: Figure not drawn to scale.

13. In the figure above, AB = AD = 2, and $\triangle BCD$ is an isosceles triangle. What is the length of

 \overline{BC} ?

- (A)3
- (B) $3\sqrt{2}$
- (C) 4
- (D) $4\sqrt{2}$
- (E)6

Note: Figure not drawn to scale.

14. Which of the following is true bout the lengths *a* and *b* of the sides of the triangle above?

(A)
$$0 < (a+b)^2 \le 10$$

(B)
$$10 < (a+b)^2 \le 40$$

(C)
$$40 < (a+b)^2 \le 80$$

(D)
$$80 < (a+b)^2 \le 100$$

(E)
$$100 < (a+b)^2$$

- 15. There are two joggers; one runs 8 miles north and then 5 miles east, and the other jogger runs 10 miles west and then 12 miles south. What is the shortest distance between these two joggers?
 - (A) 20
 - (B) 25
 - (C) 28
 - (D) 30
 - (E) 36

Note: Figure not drawn to scale.

- 16. In $\triangle ABC$ above, AB = 10 and AC = 20. What is the length of \overline{AD} ?
 - (A)5
 - (B) $5\sqrt{3}$
 - (C) $4\sqrt{5}$
 - (D) $6\sqrt{3}$
 - (E) $8\sqrt{5}$

For questions 17-19 refer to the following figure and information.

Note: Figure not drawn to scale.

In the figure above, AD = 9 and CD = 16.

- 17. What is the length of AB?
 - (A) 12
 - (B) 13
 - (C) 14
 - (D) 15
 - (E) 18
- 18. What is the length of \overline{BC} ?
 - (A) 18
 - (B) 20
 - (C) 25
 - (D) 28
 - (E) 30
- 19. What is the length of \overline{BD} ?
 - (A) 10
 - (B) 11
 - (C) 12
 - (D) 13
 - (E) 14

SIT for the SAT WS 6—Skills 21-25

Problem	Correct	Skill
Number	Answer	Number
1	D	21
2	A	21
2 3	D	21
4	Е	22
4 5	A	22
6	D	22
7	В	23
8	A	23
9	A	23
10	D	23
11	В	24
12	В	24
13	C	24
14	Е	24
15	В	24
16	C	24
17	D	25
18	В	25
19	C	25