WS 1—SAT Overview (Sample Test 1) **KEY & Scaled Score**

Answers:	Scoring the Math SAT Sample Test 1	
1. B	Check your responses with the correct	How many multiple-choice questions did
2. D	answers in the column at left. Fill in the	you get wrong?
3. D	blanks below and do the calculations to get	Section 1: Questions 1-10
4. E	your raw scores. Use the table to find your	Section 2: Questions 11-14 +
5. A	scaled score.	Total =
6. A		$\times 0.25 = \underline{\hspace{1cm}} (\mathbf{B})$
7. D	How many questions did you get correct?	$\mathbf{A} - \mathbf{B} = \underline{\hspace{1cm}}$
8. D	Section 1: Questions 1-10	Raw Score
9. C	Section 2: Questions 11-14 +	
10. A	Section 2: Questions 15-20 +	Raw score rounded to nearest whole number
11. C	$Total = \underline{\hspace{1cm}}(A)$	
12. C		
13. C		Use the Score Conversion Table to look up
14. A		your raw score to get your scaled score
15. 24		
16. 7		
17. 8		

Score	Converstion Table
DAXX	CCALED

18.4 19.60 20. 280

Score Conversion Table						
RAW	SCALED	RAW	SCALED	Math ScorePercentile		
SCORE	SCORE	SCORE	SCORE	800 99.5+		
20	800	8	490	770-790 99.5		
19	740	7	480	720-760 99		
18	700	6	450	670-710 97		
17	670	5	440	640-660 94		
16	640	4	410	610-630 89		
15	630	3	400	590-600 84		
14	600	2	380	560-580 77		
13	580	1	350	530-550 68		
12	570	0	330	510-520 59		
11	550	-1	290	480-500 48		
10	530	-2	260	450-470 37		
9	510	-3	220	430-440 26		
		-4	200	390-420 16		
		& below		350-380 8		
				310-340 2		
				210-300 0.5		
				200 0		

Detailed Solutions

1. B is correct. Translate from words to algebra The quotient of *x* and 3

 $\frac{x}{3}$ $\frac{x}{3} - 8$ = 8 less than the quotient and is the required answer.

2. D is correct. It is easily seen that

 $\frac{|x|}{|y|} = \frac{|x|}{|y|}$ For example: $\frac{|-2|}{|4|} = \frac{|-2|}{|4|} = \frac{1}{2}$; $\frac{|-3|}{|-6|} = \frac{|-3|}{|-6|} = \frac{1}{2}$

3. D is correct. From an isosceles triangle Since AC = CD, we know that

$$x = y$$

We also know that

$$m \angle ACB = m \angle D + m \angle A$$

Substituting the given into $\boxed{2}$, we have

$$110 = y + x$$
 3

Substituting 1 into 3, we get

$$110 = y + y$$
$$110 = 2y$$

4. E is correct. Average = $\frac{\text{sum of values}}{\text{total number of values}}$ Let x, y = two unknown numbers.

Thus,
$$28 + 30 + 32 + x + y = 34$$

Multiplying 1 by 5,

$$28 + 30 + 32 + x + y = 170$$

or
$$90 + x + y = 170$$

or
$$x + y = 80$$

5. A is correct. Use new definitions carefully

Given:
$$\widehat{x} = \frac{x^2}{3}$$
 and $\overline{x} = \frac{9}{x}$

Thus,
$$\widehat{x} \times \boxed{x} = \frac{x^2}{3} \times \frac{9}{x} = 3x$$

6. A is correct.

It can be seen that the dark region in Choice A is Common to sets A, B, and C. Thus the diagram in Choice A describes the dark region as the set of elements that belongs to all of the sets A, B, and C.

7. D is correct. Use units/stoichiometry

$$\frac{\left(\frac{p \text{ gallons}}{\text{car}}\right) \times (r \text{ cars}) = pr \text{ gallons for each month}}{\frac{q \text{ gallons}}{\text{pr} \frac{\text{gallons}}{\text{months}}} = \frac{q}{pr} \text{months}}$$

8. D is correct.

Let x, x + 1, x + 2, x + 3, x + 4 represent the 5 consecutive integers.

Then,
$$x + x + 1 + x + 2 + x + 3 + x + 4 = w$$

 $5x + 10 = w$

The next 5 consecutive positive integers will be:

$$x + 5$$
, $x + 6$, $x + 7$, $x + 8$, $x + 9$

Their sum will be:

$$x + 5 + x + 6 + x + 7 + x + 8 + x + 9 = 5x + 35$$

We can write $\boxed{2}$ as 5x + 35

$$= 5x + 10 + 25$$
 3

Substituting 1 and 3, we get

$$5x + 10 + 25 = w + 25$$

9. C is correct. Translate words to algebra.

We are told that the area of the square is twice the area of triangle. This translates to:

$$a^{2} = 2\left(\frac{1}{2} \times b \times c\right)$$

$$a^{2} = bc$$

$$\boxed{1}$$

We are given that bc = 100

Substituting 2 into 1, we get

$$a^2 = 100$$

10. A is correct.

Given that the radius of the circle = 2, we have Circumference = 2 π (radius) = 2π (2)

 $=4\pi$ inches 1

We are given that

$$\widehat{AD} + \widehat{BC} = 3\pi \text{ inches}$$

(Use Strategy: The whole equals the sum of its parts.)

We know that

$$\widehat{AD} + \widehat{BC} + \widehat{AC} + \widehat{DB} = \text{circumference}$$
of circle

Substituting 1 and 2 into 3, we have

$$3\pi$$
 inches $+\widehat{AC} + \widehat{DB} = 4\pi$ inches $\widehat{AC} + \widehat{DB} = \pi$ inches $\boxed{4}$

We know that the measure of an arc can be found by:

measure of arc =
$$\left(\frac{\text{length of arc}}{\text{circumference}}\right) \times 360 \boxed{5}$$

of circle

Substituting $\boxed{1}$ and $\boxed{4}$ into $\boxed{5}$, we get measure of AC + DB

$$= \left(\frac{\pi \text{ inches}}{4\pi \text{ inches}}\right) \times 360 = 90$$

11. C is correct. Use given info carefully.

Given:
$$x + by = 5$$
 1
 $3x + y = 5$ 2
 $y = 2$ 3

We want to find b.

Substituting 3 into 2, we get

$$3x + 2 = 5$$

or $x = 1$ 4

Substituting 3 and 4 into 1, we have

$$1 + 2b = 5$$
or
$$2b = 4$$
or
$$b = 2$$

12. C is correct. Use units/stoichiometry. Since 7 days = 1 week, 24 hours = 1 day, and 60 minutes = 1 hour, then

1 week = (1 week)
$$\left(\frac{7 \text{ days}}{\text{yeek}}\right) \left(\frac{24 \text{ hours}}{\text{day}}\right) \left(\frac{60 \text{ minutes}}{\text{hour}}\right)$$

= (7) (24) (60) minutes

Thus,

$$\frac{24 \text{ minutes}}{1 \text{ week}} = \frac{24 \text{ minutes}}{(7)(24)(60) \text{ minutes}} = \frac{1}{420}$$

13. C is correct. Translate words to algebra.

Amount spent on candy = $\frac{2}{5} \times \$30 = \12 Amount left after Johnny bought candy = \$30 - \$12 = \$18

Amount spent on ice

$$cream = \frac{5}{6} \times \$18 = \$15$$
Amount left after buying

$$candy and ice cream = \$18 - \$15$$

$$= \$3$$

14. A is correct. $y = -x^2 = -4$. x = 2 or x = -2. Since point B lies on the left side of the y-axis, x = -2. 15. 24 Translate from words to algebra.

We are given that the wire is bent to form a circle of radius 3 feet. This means that its Length is equal to the circumference of the circle.

Thus, Length of wire =
$$2\pi r = 2\pi(3)$$
 feet
= 6π feet
 $\approx 6(3.14)$ feet

Length of wire ≈ 18.84 feet

(Use Strategy: Know how to find unknown quantities.)

Number of pieces =
$$\frac{\text{Total length}}{2 \text{ feet}}$$
 2 feet

Substituting 1 into 2, we have

Number of pieces 2 feet long
$$\approx \frac{18.84 \text{ feet}}{2 \text{ feet}}$$

 ≈ 9.42
= 9 complete pieces

16. 7 Translate words to algebra

Let *b* = number of baseballs that Dick bought

t = number of tennis balls that Dick bought

.70b = amount spent on baseballs

.60t = amount spent on tennis balls

Thus, we are told

$$.70b + .60t = 7.00$$

Multiply 1 by 10,

$$7b + 6t = 70$$

Solve 2 for t,

$$t = \frac{70 - 7b}{6}$$

17. 8 Use new definitions carefully.

In the given letter columns, only 8 triples have the property that exactly 2 of the letters in the triple are the same. Thus, 8 triples have a value of 1, and all the other triples have a value of 0. Hence, the value of the entire group of letter columns is 8.

18. 4 Use given info carefully.

It is clear from the diagram above that the triangle is a right triangle whose area is

$$A = \frac{1}{2}bh$$

From the given coordinates, we can also say that

$$b = 6 - 2 = 4$$

$$h = 3 - 1 = 2$$

Substituting [2] and [3] into [1],

$$A = \frac{1}{2}(4)(2)$$

$$A = 4$$

19. 60 Since we are given the radii of the circles, we have

$$AN = AM = 1$$

$$BM = BP = 2$$

$$CN = CP = 3$$

We want to find

(Use Strategy: The whole equals the sum of its parts.) From the diagram, we see that

$$AB = AM + BM$$
 5

$$BC = BP + CP$$

$$AC = AN + CN 7$$

Substituting 1, 2, 3 into 5, 6, 7 we have

$$AB = 3$$

$$BC = 5$$

$$AC = 4$$

Thus.

$$(AB) (BC) (AC) = (3) (5) (4)$$

= 60

20. 280 Use given info carefully & effectively.

From the diagram, n = d (vertical angles)

We know x + y + z + n = 360

2

Substituting 1 into 2, we get

$$x + y + z + d = 360$$

3

Subtracting d from $\boxed{3}$, we have

$$x + y + z = 360 - d$$

4

We know that 100 + d = 180 from the diagram.

So,
$$d = 180 - 100 = 80$$

5

Substituting 5 into 4, we get

$$x + y + z = 360 - 80$$

$$x + y + z = 280$$