# Lesson 2—Skills 1-5

### **Skill 1: Absolute Value**

The absolute value of x, denoted |x|, is simply the distance of x from zero. For any real number k,

- 1. If |x| = k and k > 0, then x = k or x = -k
- 2. If |x| < k and k > 0, then -k < x < k
- 3. If |x| > k and k > 0, then x < -k or x > k
- 4.  $|x| < 6 \Leftrightarrow x^2 < 36 \Leftrightarrow -6 < x < 6$
- 5.  $|x| > 6 \Leftrightarrow x^2 > 36 \Leftrightarrow x < -6 \text{ or } x > 6$
- 6. |x-5| = |5-x|

## Example 1:

(a) If |x| = 7, what is the value of x?

(b) If |x-3| = 4, what is the value of x?

- (c) If |x+4| < 8, what is the value of x?
- (d) If |x+5| > 6, what is the value of x?

(e) If -9 < x < 3, express the interval using absolute value.

SIT for the SAT Lesson 2—Skills 1-5

## Skill 2: Ratio of Similar Figures

If the ratio of lengths is a:b, then the ratio of areas is  $a^2:b^2$ , and the ratio of volumes is  $a^3:b^3$ 

#### Example 2:



(a) In the figure above, if the ratio of the diameter of circle *O* to the diameter of circle *P* is 5:3, what is the ratio of the area of the circle *O* to the area of circle *P*?



(b) In the figures above, if the ratio of the circumference of circle *O* to the circumference of circle *P* is 4:3, what is the ratio of the area of circle *O* to the area of circle *P*?



(c) The figure above shows two similar triangles with a side 5 and a side 2 respectively. If the area of  $\triangle ABC$  is 30, what is the area of  $\triangle PQR$ ?



(d) In the figure above, the radius of the larger circle is  $\frac{5}{2}$  times the radius of the smaller circle.

What fraction of the larger is the shaded region?

SIT for the SAT Lesson 2—Skills 1-5

#### **Skill 3: Combined Range**

If  $5 \le A \le 10$  and  $2 \le B \le 5$ , then the following are true . . .

- 1.  $7 \le A + B \le 15$
- 2.  $10 \le A \times B \le 50$
- 3.  $0 \le A B \le 8$

$$4. \quad 1 \le \frac{A}{B} \le 5$$

 $**Smallest Value \le Combined Range \le Largest Value$ 

#### Example 3:

- (a) Given  $2 \le P \le 8$  and  $1 \le Q \le 4$ . By how much is (b) If  $-2 \le A \le 2$  and  $-6 \le B \le -2$  and the maximum value of  $\frac{P}{Q}$  greater than the minimum value of  $\frac{P}{Q}$ ?
- (c) If  $1 \le P \le 6$  and  $3 \le Q \le 10$ , what is the smallest value of  $P \times Q$ ?

# Skill 4: Classifying a Group into Two Different Ways

### Example 4:

In a certain reading group organized of only senior and junior students,  $\frac{3}{5}$  of the students are boys, and the ratio of seniors to juniors is 4:5. If  $\frac{2}{3}$  of the girls are seniors, what fraction of the boys are juniors?

\*Making a chart here will help

|         | BOYS          | GIRLS         |               |
|---------|---------------|---------------|---------------|
| SENIORS | A             | В             | $\frac{4}{9}$ |
| JUNIORS | С             | D             | $\frac{5}{9}$ |
|         | $\frac{3}{5}$ | $\frac{2}{5}$ |               |

SIT for the SAT Lesson 2—Skills 1-5

#### **Skill 5: Direct Variation**

 $\begin{array}{ccc}
x & \xrightarrow{\times k} & y \\
y = kx
\end{array}$ 

or

$$\frac{y}{x} = \frac{y_1}{x_1} = \frac{y_2}{x_2} = \dots = k$$
 (Constant of Proportionality)

In the xy-plane, y = mx, where m is slope as well as the constant of proportionality, but the y-intercept must be zero.



#### Example 5:

- (a) The value y changes directly proportional to the value of x. If y = 15 when x = 5, what is the value of y when x = 12.5.
- (b) A group of workers can harvest all the grapes from 10 square meters of a vineyard in  $\frac{1}{3}$  minutes. At his rate, how many minutes will the group need to harvest all the grapes from 300 square meters of this vineyard?

(c) To make an orange dye, 5 parts of red dye are mixed with 3 parts of yellow dye. To make a green dye, 4 parts of blue dye are mixed with 2 parts of yellow dye. If equal amounts of green and orange are mixed, what fraction of the new mixture is yellow dye?