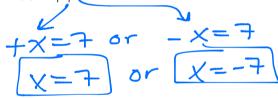
SIT for the SAT Lesson 2—Skills 1-5

Lesson 2—Skills 1-5

Skill 1: Absolute Value


The absolute value of x, denoted |x|, is simply the distance of x from zero. For any real number k,

- 1. If |x| = k and k > 0, then x = k or x = -k
- 2. If |x| < k and k > 0, then -k < x < k
- 3. If |x| > k and k > 0, then x < -k or x > k
- 4. $|x| < 6 \Leftrightarrow x^2 < 36 \Leftrightarrow -6 < x < 6$
- 5. $|x| > 6 \Leftrightarrow x^2 > 36 \Leftrightarrow x < -6 \text{ or } x > 6$
- 6. |x-5| = |5-x|

* Drop absolute value:

Example 1:

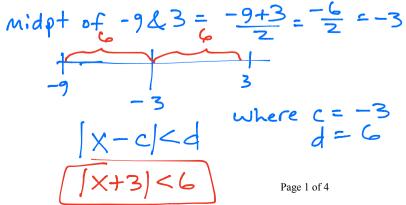
(a) If |x| = 7, what is the value of x?

one is plus, one is minus

(b) If |x-3|=4, what is the value of x's

$$+(x-3)=4$$
 or $-(x-3)=4$
 $x-3=4$
 $x=7$ or $x=-1$

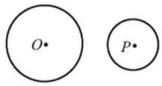
(c) If |x+4| < 8, what is the value of x?

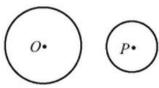

(c) If
$$|x+4| < 8$$
, what is the value of x ?

 $x + 4 < 8$ or $-(x+4) < 8$
 $x < 4$ or $x + 4 > -8$
 $x < 4$ or $x > -12$

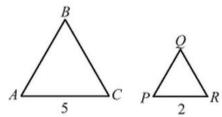
(d) If |x + 5| > 6, what is the value of x?

$$(x+5)^{2}$$
 $(x+5)^{2}$ $(x+5$


(e) If -9 < x < 3, express the interval using absolute value.


Skill 2: Ratio of Similar Figures

If the ratio of lengths is a:b, then the ratio of areas is $a^2:b^2$, and the ratio of volumes is $a^3:b^3$


Example 2:

(a) In the figure above, if the ratio of the diameter of circle *O* to the diameter of circle *P* is 5:3, what is the ratio of the area of the circle *O* to the area of circle *P*?

(b) In the figures above, if the ratio of the circumference of circle *O* to the circumference of circle *P* is 4:3, what is the ratio of the area of circle *O* to the area of circle *P*?

(c) The figure above shows two similar triangles with a side 5 and a side 2 respectively. If the area of $\triangle ABC$ is 30, what is the area of $\triangle PQR$?

(d) In the figure above, the radius of the larger circle is $\frac{5}{2}$ times the radius of the smaller circle.

What fraction of the larger is the shaded region?

Length: 5: 2

Area: 25: 4

Shaded:
$$\frac{25-4}{25} = \frac{21}{25}$$

SIT for the SAT Lesson 2—Skills 1-5

Skill 3: Combined Range

If $5 \le A \le 10$ and $2 \le B \le 5$, then the following are true . . .

- 1. $7 \le A + B \le 15$
- 2. $10 \le A \times B \le 50$
- 3. $0 \le A B \le 8$
- $4. \quad 1 \le \frac{A}{B} \le 5$

**Smallest Value ≤ Combined Range ≤ Largest Value

Example 3:

(a) Given $2 \le P \le 8$ and $1 \le Q \le 4$. By how much is the maximum value of $\frac{P}{Q}$ greater than the

alue of
$$\frac{P}{Q}$$
 greater than the $C = (A - B)^2$, what is the smallest value of C ?

minimum value of
$$\frac{P}{Q}$$
?

 $\frac{P}{Q}$: $\frac{Z}{1}$, $\frac{Z}{4}$, $\frac{B}{1}$, $\frac{B}{4}$ = 2, $\frac{1}{2}$, $\frac{B}{8}$, $\frac{Z}{2}$

So $\frac{B}{2} = \frac{15}{2}$ or 7.5

$$A-B: -2+6, -2+2, 2+6, 2+2$$
= 4,0,8,4

(A-B): 16,0,64,16

Smallest is 0

(b) If $-2 \le A \le 2$ and $-6 \le B \le -2$ and

(c) If $1 \le P \le 6$ and $3 \le Q \le 10$, what is the smallest value of $P \times Q$?

Skill 4: Classifying a Group into Two Different Ways

Example 4:

In a certain reading group organized of only senior and junior students, $\frac{3}{5}$ of the students are boys, and the ratio of seniors to juniors is 4:5. If $\frac{2}{3}$ of the girls are seniors, what fraction of the boys are juniors?

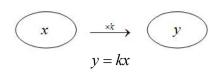
*Making a chart here will help

BOYS

GIRLS

SENIORS $A = \frac{9}{45}$ $B = \frac{4}{15}$ $\frac{4}{9}$ JUNIORS D $\frac{5}{9}$

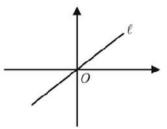
$$\frac{2}{3}(\frac{2}{5}) = B = \frac{4}{15}, A + \frac{4}{15} = \frac{4}{9}, A = \frac{4}{9} - \frac{4}{15} = \frac{20}{45} - \frac{12}{45} = \frac{8}{45}$$


$$C + \frac{8}{45} = \frac{3}{5}, C = \frac{2}{5} - \frac{8}{45} = \frac{27}{45} - \frac{8}{45} = \frac{19}{45}$$

$$C + \frac{9}{45} = \frac{3}{5}, C = \frac{2}{5} - \frac{8}{45} = \frac{27}{45} - \frac{8}{45} = \frac{19}{45}$$

$$C + \frac{19}{45} = \frac{1$$

SIT for the SAT Lesson 2—Skills 1-5


Skill 5: Direct Variation

or

$$\frac{y}{x} = \frac{y_1}{x_1} = \frac{y_2}{x_2} = \dots = k$$
 (Constant of Proportionality)

In the xy-plane, y = mx, where m is slope as well as the constant of proportionality, but the y-intercept must be zero.

Example 5:

(a) The value y changes directly proportional to the value of x. If y = 15 when x = 5, what is the value of y when x = 12.5.

The of y when
$$x = 12.5$$
.

$$y = k \times / k = \frac{y_1}{x_1} = \frac{y_2}{x_2}$$

$$\frac{15}{5} = \frac{y}{12.5}$$

$$y = 12.5(3)$$

$$y = 37.5$$

(c) To make an orange dye, 5 parts of red dye are mixed with 3 parts of yellow dye. To make a green dye, 4 parts of blue dye are mixed with 2 parts of yellow dye. If equal amounts of green and orange are mixed, what fraction of the new mixture is yellow dye?

(b) A group of workers can harvest all the grapes from 10 square meters of a vineyard in $\frac{1}{3}$

minutes. At his rate, how many minutes will the group need to harvest all the grapes from 300 square meters of this vineyard?

Orange: SR + 3y = 8parts 2x3 L cm of 8 & 6 Green: 4B + 2y = 6parts)x4 [5 24] Grange: 15R + 9y = 24parts 7 equal parts green: 16B + 8y = 24 parts 8

Page 4 of 4

100,113+177=48 parts

Mixture DR + 16D 1 1 1 J 17 Su yellow proportion is 17 48