Name

Date

Period

Worksheet 3.2—Real Zeros of Polynomial Functions

Show all work on a separate sheet of paper. Give simplified, exact values for all answers. No Calculator is permitted unless specifically stated.

I. Multiple Choice

1. Let f be a polynomial function with integer coefficients such that $f(\sqrt{3}) = 0$. Which of the following statements is not necessarily true?

(A) $x + \sqrt{3}$ is a factor of f(x) (B) $x - \sqrt{3}$ is a factor of f(x) (C) $x = \sqrt{3}$ is a root of f(x)

- (A) x + y = x(D) $x^2 + 3$ is a factor of f(x) (E) x = x2. If $f(x) = 6x^3 + 14x^2 25x + 4$, then how many possible distinct rational roots does f(x) have? $\frac{+1 + 2 + 4}{1 + 2 + 4}$ (A) 8 (B) 12 (C) 16 (D) 24 (E) 30 $\frac{+1 + 2 + 4}{1 + 2 + 4}$ $\frac{+1 + 2 + 4}{1 + 2 + 4}$ $\frac{+1 + 2 + 4}{1 + 2 + 4}$ $\frac{+1 + 2 + 4}{1 + 2 + 4}$ $\frac{+1 + 2 + 4}{1 + 2 + 4}$
- - (A) The remainder when f(x) is divided by x+2 is -3
 - (B) The remainder when f(x) is divided by x-2 is -3
 - (C) The remainder when f(x) is divided by $x^2 + x 1$ is -3
 - (D) x+2 is not a factor of f(x)
 - (E) f(x) is not evenly divisible by x+2
- 4. Let $f(x) = (x^2 + 1)(x 2) + 7$. Which of the following statements is not true?
 - (A) The remainder when f(x) is divided by $x^2 + 1$ is 7
 - (B) The remainder when f(x) is divided by x-2 is 7
 - (C) f(2) = 7
 - (D) f(0) = 5
 - (E) f does not have a real root
- 5. A degree 3 polynomial with integer coefficients with roots x = 1 and $x = 4 2\sqrt{3}$ that passes through the point (-1,-52) has a y-intercept of what?

II. Short Answer

6. Two polynomials are given. Use either synthetic or long division to divide P(x) by D(x). Express your answer in two ways: $P(x) = D(x) \cdot Q(x) + R(x)$ and $\frac{P(x)}{D(x)} = Q(x) + \frac{R(x)}{D(x)}$.

(a)
$$P(x) = x^3 + 4x^2 - 6x + 1$$
, $D(x) = x - 1$

(b)
$$P(x) = 4x^3 + 7x + 9$$
, $D(x) = 2x + 1$

$$| \frac{1}{1} \frac{1}{5} \frac{$$

$$\frac{Q(x)=2\cdot x^{2}-x+4}{2x+1|4x^{3}+0x^{2}+7x+9}$$

$$\frac{-2x^{2}+7x+9}{42x^{2}+7x+9}$$

$$\frac{-8x+7}{7x^{3}+7x+9} = (2x+1)(2x^{2}-x+4)+5$$

$$\frac{-4x^{3}+7x+9}{2x+1} = 2x^{2}-x+4+\frac{5}{2x+1}$$

7. Use synthetic division to find the simplified, exact zeroes of each of the following. Use the quadratic formula if necessary.

(a)
$$f(x) = \frac{3x^3 + 7x^2 + 6x - 5}{3x^3 + 7x^2 + 6x - 5}$$
, if $f(\frac{1}{2}) = 0$ (b) $f(x) = x^4 + 3x^3 - 16x^2 - 27x + 63$, if $f(-3) = 0 = f(3)$

(c)
$$f(x) = 10 + 5x - x^3 - 7x^2 + x^4$$
, if $f(\sqrt{5}) = 0$ (d) $f(x) = x^4 - 5x^2 - 2x^3 + 8x + 4$, if $f(1 - \sqrt{2}) = 0$

a)
$$\frac{1}{2}$$
 $\frac{1}{2}$ \frac

2 (X+5)(X-4)

C)
$$f(x) = X^4 - X^3 - 7X^2 + 5x + 10$$
 $\sqrt{5} | 1 - 1 - 7 - 5 - 10$
 $-\sqrt{5} | 1 - 1 - 7 - 5 - 10$
 $-\sqrt{5} | 1 - 1 - 3 - 10 - 375 | 0$
 $-\sqrt{5} | 1 - 1 - 3 | 0$
 $\sqrt{2} - X - 3 = 0$
 $(X + 1)(X - 2) = 0$
 $\sqrt{2} - X - 3 = 0$
 $(X + 1)(X - 2) = 0$
 $\sqrt{2} - X - 3 = 0$
 $\sqrt{2} - 2 = 0$
 $\sqrt{2} - 4 = 0$
 $\sqrt{2} - 2 = 0$

8. (Calculator permitted) If $P(x) = 8x^5 - 14x^4 - 22x^3 + 57x^2 - 35x + 6$, list all possible rational zeros, then find the simplified, exact real zeros. Use the calculator to help you find rational roots, and use the quadratic formula if necessary.

Factory
$$\frac{\pm 6}{8}$$
 $\frac{\pm 1,2,3,6}{1,2,4,8}$ $\left[\pm 1,2,3,6,\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{3}{2},\frac{3}{4},\frac{3}{8}\right]$

$$8x^{2}-10x+4=0$$

$$4(2x^{2}-4x+1)=0$$

$$x=4+\sqrt{8}$$

$$x=4+\sqrt{8}$$

$$x=4+\sqrt{8}$$

$$x=1+\sqrt{2}\sqrt{2}$$

9. Write an equation, in reduced factored form, of a polynomial, f, of lowest degree with the following properties: $f(-1) = f(-4) = f(-\sqrt{2}) = f(2+\sqrt{3}) = 0$ and f(0) = -7.

$$f(x) = A(x+1)(x+4)(x^2-2)(x^2-4x+1)$$

10. Find the remainder of each of the following, then decide if the divisor is a factor of the dividend.

(a) when
$$9x^{2222} - 12x^{1946} + 33x^{565} + 26x$$
 is divided by $x+1$

(b) when
$$47x^{5769} - 3x^{400} + 735$$
 is divided by x

a)
$$9(-1)^{22.22}$$
 $12(-1)^{1946}$ $+33(-1)^{56.5}$ $+36(-1)$
 $9-12-33-36=[-63]$
b) $47(0)^{5769}$ $-3(0)^{400}$ $+735[-735]$

11. Find the given value of k so that the given divisor D(x) is a factor of P(x).

(a)
$$P(x) = 3x^4 + kx^2 - 2x + 1$$
, $D(x) = x + 1$ (b) $P(x) = 2x^3 + kx^2 + kx - 5$, $D(x) = x - 2$

(c)
$$P(x) = 3x^{1000} + kx^{48} - 2x^{15} + kx$$
, $D(x) = x - 1$

$$a = 3(-1)^{4} + k(-1)^{2} - 2(-1) + 1$$

$$0 = 3 + k + 2 + 1$$

$$0 = 6 + k$$

- 12. (Calculator permitted) An open-top box is to be made by taking a piece of cardboard 20 cm by 40 cm, cutting squares of side length x cm from each corner, and folding up the sides.
 - (a) Write an equation (in expanded form) of a polynomial function V(x), representing the volume of the box (in cm³) in terms of x.
 - (b) What is the domain of V(x)? For what values of x is V(x) > 0? What is the relevant domain, that is, what values of x make sense in the context of this problem?
 - (c) If the volume of the box is to be 1500 cm³, show that the box can be constructed in two different ways, and find the exact dimensions of the box in each case.
 - (d) What dimensions will give the maximum volume of the box?

a)
$$V(x) = (40-9x)(90-9x)(x)_{10} > 0$$

DTR (2)
$$X \in (0,10) \cup (20,\infty)$$
, (3) $X \in (0,10)$
C) $1500) = (40-2x)(20-2x)(x)$ $X = 3.486$, $5 = 3.486$, $5 = 3.486$, $5 = 3.486$
D) $X = 4.226 + .226 \times 11.547 \times 31.547 \times$