Period

Name Date

Worksheet 5.6—The Other Trig Functions

Show all work. A calculator is permitted. Report three decimals and units in all final answers.

Multiple Choice

- 1. The graph of $y = \cot x$ can be obtained by a horizontal shift of the graph of the graph of $y = \cot x$

 - (A) $-\tan(x+\pi)$ (B) $-\cot(x-\frac{\pi}{2})$ (C) $\sec x$ (D) $\tan(x-\frac{\pi}{2})$ (E) None of these

- 2. The graph of $y = \sec x$ never intersects the graph of y =
- (A) x (B) x^2 (C) $\csc x$ (D) $\cos x$
- (E) $\sin x$

- 3. If $k \neq 0$, what is the range of the function $y = k \csc x$?

- (A) [-k,k] (B) (-k,k) (C) $(-\infty,-k)\cup(k,\infty)$ (D) $(-\infty,-k]\cup[k,\infty)$ (E) $\left(-\infty,-\frac{1}{k}\right]\cup\left[\frac{1}{k},\infty\right)$

- 4. The function $y = \csc x$ has the same domain as the function y =
 - (A) $\sin x$
- (B) $\tan x$
- (C) $\cot x$
- (D) $\sec x$
- (E) $\csc 2x$

- 5. Consider the functions $f(x) = \tan \frac{\pi x}{4}$ and $g(x) = \frac{1}{2} \sec \frac{\pi x}{4}$ on the interval (-1,1)
 - I. Approximate the largest interval where f < g.

$$(A)\left(-1,\frac{2}{3}\right)$$

(B)
$$\left(-\frac{2}{3},1\right)$$

$$(C)\left(-1,\frac{4}{3}\right)$$

(A)
$$\left(-1, \frac{2}{3}\right)$$
 (B) $\left(-\frac{2}{3}, 1\right)$ (C) $\left(-1, \frac{4}{3}\right)$ (D) $\left(-\frac{4}{3}, 1\right)$ (E) $\left(-1, 1\right)$

(E)
$$(-1,1]$$

II. Approximate the largest interval where 2f < 2g

$$(A)\left(-1,\frac{4}{3}\right)$$

(B)
$$\left(-1,\frac{2}{3}\right)$$

(C)
$$\left(-\frac{4}{3},1\right)$$

(A)
$$\left(-1, \frac{4}{3}\right)$$
 (B) $\left(-1, \frac{2}{3}\right)$ (C) $\left(-\frac{4}{3}, 1\right)$ (D) $\left(-\frac{2}{3}, 1\right)$ (E) $\left(-1, 1\right)$

$$(E) (-1,1)$$

6. Use the Unit Circle to solve $\cot x = -\sqrt{3}$ on the interval $[-2\pi, 2\pi]$

(A)
$$\frac{7\pi}{6}, \frac{\pi}{6}, -\frac{5\pi}{6}, -\frac{11\pi}{6}$$
 (B) $-\frac{4\pi}{3}, -\frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{3}$ (C) $-\frac{7\pi}{6}, -\frac{\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6}$ (D) $\frac{4\pi}{3}, \frac{\pi}{3}, -\frac{2\pi}{3}, -\frac{5\pi}{3}$

(B)
$$-\frac{4\pi}{3}, -\frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{3}$$

(C)
$$-\frac{7\pi}{6}, -\frac{\pi}{6}, \frac{5\pi}{6}, \frac{11\pi}{6}$$

(D)
$$\frac{4\pi}{3}, \frac{\pi}{3}, -\frac{2\pi}{3}, -\frac{5\pi}{3}$$

7. Use the Unit Circle to solve $\csc x = \frac{2\sqrt{3}}{3}$ on the interval $[-2\pi, 2\pi]$.

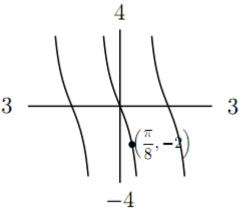
(A)
$$-\frac{4\pi}{3}, \frac{2\pi}{3}$$

(B)
$$-\frac{2\pi}{3}, \frac{4\pi}{3}$$

(A)
$$-\frac{4\pi}{3}, \frac{2\pi}{3}$$
 (B) $-\frac{2\pi}{3}, \frac{4\pi}{3}$ (C) $-\frac{4\pi}{3}, -\frac{\pi}{3}, \frac{2\pi}{3}, \frac{5\pi}{3}$ (D) $-\frac{5\pi}{3}, -\frac{2\pi}{3}, \frac{\pi}{3}, \frac{4\pi}{3}$ (E) None of these

(D)
$$-\frac{5\pi}{3}$$
, $-\frac{2\pi}{3}$, $\frac{\pi}{3}$, $\frac{4\pi}{3}$

- 8. What is the period of the function $f(\theta) = \cot \frac{\pi \theta}{8}$?


 - (A) P = 8 (B) $P = 16/\pi$ (C) $P = 8/\pi$ (D) P = 16
- (E) the function is not periodic

9. What is the period of $y = 2\sec\left(\pi - \frac{7}{2}\pi x\right)$? (A) $P = \frac{4}{7}$ (B) $P = \frac{7}{4}$ (C) $P = \frac{7}{2}$ (D) P = 7 (E) $P = \frac{2}{7}$

Short Answer

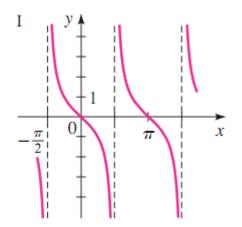
10. The graph at right is for $f(x) = a \tan bx$. Given the fact that the graph of f(x) has a vertical asymptote at $x = \frac{\pi}{4}$...

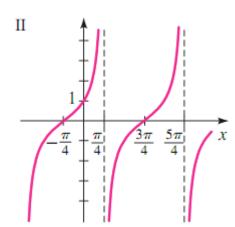
(a) Find the value of b.

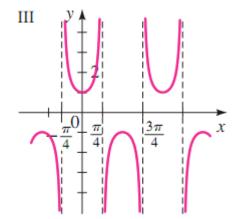
(b) Find the value of a

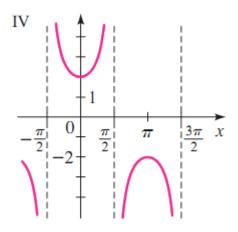
For 11 through 16, match the trigonometric function with one of the graphs from I through VI.

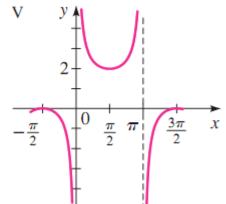
11.
$$f(x) = \tan\left(x + \frac{\pi}{4}\right)$$

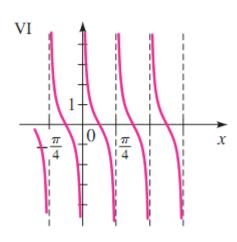

$$12. \ f(x) = \sec 2x$$


13.
$$f(x) = \cot 4x$$

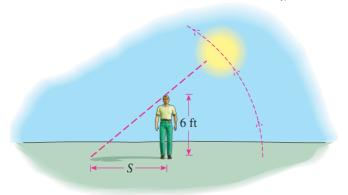

14.
$$f(x) = -\tan x$$


$$15. \quad f(x) = 2\sec x$$


$$16. \quad f(x) = 1 + \csc x$$



For 17-19 find the period, then sketch at least two cycles of the function. *Then* write an equivalent equation of the graph in terms of each function's cofunction.


17.
$$y = 2\csc\left(\pi x - \frac{\pi}{3}\right)$$

18.
$$y = 2\csc\left(3x + \frac{\pi}{2}\right) - 1$$

19.
$$y = 3 \tan \left(\frac{2}{3} x - \frac{\pi}{6} \right) + 1$$

20.
$$y = \frac{1}{2}\cot(\pi - \pi x) + 3$$

21. (Calculator Permitted) On a day when the sun passes directly overhead at noon, a six-foot-tall man casts a shadow of length $S(t) = 6 \left| \cot \frac{\pi}{12} t \right|$ where S is measured din feet and t is the number of hours since 6 A.M.

(a) Find the length of the shadow at 8:00 A.M., noon, 2:00 P.M., and 5:45 P.M. Show your set-ups.

(b) Sketch a graph of the function S for 0 < t < 12.

(c) From the graph determine the values fo *t* at which the length of the shadow equals the man's height. To what time of day does each of these values correspond?

- (d) Explain what happens to the shadow as the time approaches 6 P.M., that is, explain the meaning of $\lim_{t\to 12^-} S(t)$.
- (e) Find S(6) both with and without the calculator. Why do you get different answers? Why does your calculator give you and "undefined" value?