Date

Period

Worksheet 2.5—Building Functions from other Functions

Give simplified, exact values for all answers. No Calculator is Permitted unless specifically stated.

I. Multiple Choice

_____1. If the point (3,4) lies on the graph of an invertible function f, then which of the following points lies on the graph of its inverse?

- (A) (4,3) (B) (3,-4) (C) $(3,\frac{1}{4})$ (D) (-3,4) (E) None of these

_____2. The inverse of the function f(x) = 7x + 8 will be

$$(A) g(x) = \frac{x-8}{7}$$

- (A) $g(x) = \frac{x-8}{7}$ (B) $g(x) = \frac{1}{7x+8}$ (C) $g(x) = \frac{8}{x-7}$ (D) g(x) = -7x-8 (E) $g(x) = -\frac{1}{7}x+8$

_____3. If $f(x) = \sqrt{x}$ and $g(x) = x^2$, then (gf)(x) =

- (A) $\frac{\sqrt{x}}{x}$ (B) |x| (C) $x^{5/2}$ (D) x (E) $\frac{x}{\sqrt{x}}$

4. If $f(x) = \sqrt{x}$ and $g(x) = x^2$, then $(g \circ f)(x) =$

- (A) $\frac{\sqrt{x}}{x}$ (B) |x| (C) $x^{5/2}$ (D) x (E) $\frac{x}{\sqrt{x}}$

- _____5. If $f(x) = \sqrt{x}$ and $g(x) = x^2$, then $(f \circ g)(x) =$
 - (A) $\frac{\sqrt{x}}{x}$ (B) |x| (C) $x^{5/2}$ (D) x (E) $\frac{x}{\sqrt{x}}$

6. Suppose f and g are functions with domain of all real numbers. Which of the following is NOT necessarily true?

(A) (f+g)(x) = (g+f)(x) (B) (fg)(x) = (gf)(x) (C) f(g(x)) = g(f(x))(D) (f-g)(x) = -(g-f)(x) (E) $(f \circ g)(x) = f(g(x))$

_____7. If f(x) = x - 7 and $g(x) = \sqrt{4 - x}$, what is the domain of $\frac{f}{g}$? (A) $\left(-\infty,4\right)$ (B) $\left(-\infty,4\right]$ (C) $\left(4,\infty\right)$ (D) $\left[4,\infty\right)$ (E) $\left(4,7\right)\cup\left(7,\infty\right)$

_____8. If $f(x) = x^2 + 1$, then $(f \circ f)(x) =$ (A) $2x^2 + 2$ (B) $2x^2 + 1$ (C) $x^4 + 1$ (D) $x^4 + 2x^2 + 1$ (E) $x^4 + 2x^2 + 2$

- 9. Which of the following relations is equivalent to y = |x|?

- (A) y = x (B) $y = \sqrt{x^2}$ (C) $y^3 = x^3$ (D) $y = (\sqrt{x})^2$ (E) x = |y|

_____10. Let
$$h(x) = \frac{4x+5}{2x-7}$$
 and $f(x) = x+6$. If $h(x) = (g \circ f)(x)$, then $g(x)$ is ??

(A)
$$\frac{4x+1}{2x-13}$$

(B)
$$\frac{4x-1}{2x+13}$$

(C)
$$\frac{4x}{2x} - \frac{5}{7}$$

(D)
$$\frac{4x-19}{2x-5}$$

(A) $\frac{4x+1}{2x-13}$ (B) $\frac{4x-1}{2x+13}$ (C) $\frac{4x}{2x} - \frac{5}{7}$ (D) $\frac{4x-19}{2x-5}$ (E) None of these

II. Short Answer

11. If $f(x) = \sqrt{x+3}$ and $g(x) = \sqrt{x-4}$, find formulas for $h = : \frac{f}{g}, \frac{g}{f}, f+g, f \circ g$, and $g \circ f$. Give the domain of each.

12. For each of the following, find f(g(x)) and g(f(x)). Find the domain of each and decide if f(x)and g are inverses. Give an explanation for your answers.

(a)
$$f(x) = \frac{1}{x-1}$$
, $g(x) = \sqrt{x}$

(b)
$$f(x) = \frac{1}{x+1}$$
, $g(x) = \frac{1}{x-1}$

13. Decompose each of the following functions h into two functions f and g such that h(x) = f(g(x)). Find two, different, non-trivial decompositions.

(a)
$$h(x) = \sqrt{x^2 - 5x}$$

(b)
$$h(x) = \frac{3}{x^3 - 5x + 6}$$

(c)
$$h(x) = \sqrt{x + e^{\sqrt{x}}}$$

- 14. Assume *f* is a one-to-one function.

- (a) If f(2) = 9, find $f^{-1}(9)$ (b) If $f^{-1}(-3) = 1$, find f(1) (c) if f(x) = 5 2x, find $f^{-1}(-3)$

- 15. Find the inverse, g(x), of the following functions, then compose the functions to verify.
- (a) $f(x) = (2-x^3)^5$

(b) $f(x) = \frac{2-7x}{3x-1}$

16. The following functions are not one-to-one. Restrict each's domain so that the resulting function IS one-to-one. Write an equation for each graph (assume no dilations), then find the equation of the inverse function under the restricted domain.

(a)

(b)

Precal Matters WS 2.5: Building Funcs

17. Use the graph of each function, f, to sketch the graph of f^{-1} . Assume the scales are square.

(a)

(b)

18. Korpicello's Pizza charges a base price of \$5 for a large pizza, plus \$2 for each topping.

- a. Write and equation for the total cost, C, of a large pizza with n toppings.
- b. Find the equation for $C^{-1}(n)$, the inverse function of C(n).
- c. What is practical interpretation (or what is the usefulness) of $C^{-1}(n)$?
- d. What are *your* favorite toppings? If you only had \$10 to spend, how many, and which, toppings would you/could you get?

