Two Clues Kwiz!

Due Tuesday 2/21/2017

On a separate piece of paper, complete a-e for each of the following. Show all work. Avoid intermediate rounding error. Box your final answers, with units when appropriate.

1. If
$$\sec \Theta = -5$$
 and $\csc \theta < 0$

2. If
$$\cot \theta = -\frac{3}{4}$$
 and $\sec \theta < 0$

3. If
$$\csc\Theta = -3$$
 and $\sec\Theta < 0$

4. If
$$\cos \Theta = \frac{2}{7}$$
 and $\csc \theta < 0$

- (a) Draw the reference triangle for θ in the correct quadrant. Show your arc and angle θ .
- (b) Find the simplified, exact, rationalized value of sin⊖.
- (c) Find the simplified, exact, rationalized value of tano.
- (d) Find the reference angle, θ_{ref} , for θ in degrees. **Show the equation you are solving** and report 3 decimals.
- (e) To three decimals, find the value of θ such that $\theta \in [0^{\circ}, 360^{\circ})$. Show the computations that lead to your answer.

2
$$cot \theta = -\frac{3}{4}$$
, $sec \theta < 0$

(a) $\frac{1}{4}$ $\frac{5}{5}$ $\frac{1}{4}$
 $cot \theta = \frac{-3}{4} = \frac{1}{4}$
 $r = \sqrt{\frac{1}{2}} + (-3)^{\frac{1}{2}}$
 $r = \sqrt{\frac{1}{2}} + (-3)^{\frac{1}{2}}$
 $r = \sqrt{\frac{1}{2}} + (-3)^{\frac{1}{2}}$

(b) $sin \theta = \frac{1}{6} = \frac{1}{6}$

24 checks, 4pts each

(c)
$$+an \theta = \frac{-1}{-2\sqrt{2}} = \frac{1}{2\sqrt{2}} \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \frac{12}{4} \sqrt{V_{16}}$$

(d)
$$\Theta = \sin^{-1}(-\frac{1}{3})$$

 $\theta = -19.4712$
 $\theta_{ref} = 19.471^{\circ}$

$$(4)$$
 GoSD = $\frac{2}{7}$, CSCD < 0

(a)
$$\Theta = +\alpha n^{-1} \left(\frac{-3\sqrt{5}}{2} \right)$$

 $\theta = -43.398^{\circ}$
 $\theta = \frac{1}{2}$

(e)
$$\theta = 360^{\circ} - \theta_{ref}$$

or $\theta = 286.602^{\circ} (\sqrt{24})$
 $\theta = 286.601^{\circ}$