Chapter 3.5: Rational Functions

A rational number is a ratio of two integers. A **rational function** is a quotient of two polynomials. All rational numbers are, therefore, rational functions as well.

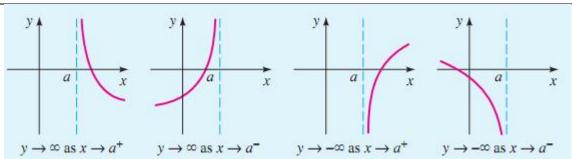
Let's get reacquainted with an old friend.

Example 1:

Sketch $f(x) = \frac{1}{x}$. Find the domain and range. Find and label all discontinuities. Find the intervals over which the function is increasing and decreasing. Describe any symmetry. Evaluate the following: $\lim_{x \to 0^-} f(x)$ (b) $\lim_{x \to 0^+} f(x)$ (c) $\lim_{x \to 0} f(x)$ (d) $\lim_{x \to 4} f(x)$ (e) $\lim_{x \to \infty} f(x)$ (f) $\lim_{x \to \infty} f(x)$

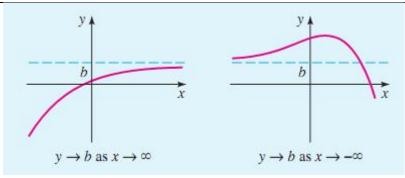
Definition of a Vertical Asymptote

If $\lim_{x\to c^+} f(x) = \pm \infty$ or $\lim_{x\to c^-} f(x) = \pm \infty$, then there exists a <u>vertical asymptote</u> at x = c.



Definition of a Horizontal Asymptote

 $\lim_{x\to\infty} f(x) = L$ or $\lim_{x\to-\infty} f(x) = L$ if and only if there exists a **Horizontal Asymptote** (HA) at y = L



Example 2:

Sketch a graph of each rational function by a transformation of the parent function $y = \frac{1}{x}$. Identify the domain and range, all asymptotes, and all discontinuities.

$$(a) f(x) = \frac{6}{4-2x}$$

(b)
$$g(x) = \frac{3x-5}{x+2}$$

Example 3:

Sketch the graph of each of the following functions. Identify the domain and range, all asymptotes, and all discontinuities.

a)
$$r(x) = \frac{5x+21}{x^2+10x+25}$$

b)
$$R(x) = \frac{x^2 - 3x - 4}{2x^2 + 4x}$$

c)
$$f(x) = \frac{4x^2 - 28x + 48}{3x^3 + 3x^2 - 36x}$$

Asymptotic and Discontinuous behavior of Rational Functions

Let *R* be the rational function

$$R(x) = \frac{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + \dots + b_1 x + b_0}$$

- 1. The Vertical Asymptotes (non-removable infinite discontinuities) of R are the lines x = a, where a is a zero of the denominator but NOT the numerator. That is $R(a) = \frac{\neq 0}{0}$.
- 2. The Holes (removable point discontinuities) of R are the points $\left(b, \lim_{x \to b} R(x)\right)$, where b is a zero of BOTH the numerator and denominator. That is $R(b) = \frac{0}{0}$
- 3. NOTE: If $R(c) = \frac{0}{\neq 0} = 0$, then x = c is a zero/x-intercept/root of R(x).
- 4. (a) if n < m, then $\lim_{x \to \infty} R(x) = 0$ and R has an HA at y = 0.
 - (b) if n = m, then $\lim_{x \to \infty} R(x) = \frac{a_n}{b_m}$, and R has an HA at $y = \frac{a_n}{b_m}$
 - (c) if n > m, then $\lim_{x \to \infty} R(x) = \infty$ or $\lim_{x \to \infty} R(x) = -\infty$, and R has no HA.

A horizontal asymptote is an example of an **end-behavior model**. There are other types of end-behavior models that can be found the same way—analyzing the leading coefficients in the numerator and denominator. The behavior of the end-behavior model and the original function will be the same as $x \to \infty$ and as $x \to -\infty$, although the **local behavior** (for small *x*-values) will be different.

Example 4:

Identify the leading term in the end behavior model of the following rational functions. Based on the end-behavior model, determine $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$.

(a)
$$f(x) = \frac{4x^2 - 2x + 11x^3 + 4}{7 - 4x}$$
 (b) $f(x) = \frac{3x^3 - 4x^5 - \pi x^2 + 4x}{3x - 11x^2 + 26.2}$ (c) $f(x) = \frac{85x^{99} + 38x^{47} + 8x^{33} + 4x}{77x^4 + 1492x^{88} - 5x^{98} - 111}$

Example 5:

Find the domain, end behavior, and all discontinuities. Sketch the function. Find the range. Use long division to find the equation of the end-behavior model. Verify each on the calculator, then zoom out to see the end behavior.

(a)
$$f(x) = \frac{x^3 - 16x}{2x^2 + 6x - 8}$$

(b)
$$f(x) = \frac{(x^2 - 1)(x^2 - 3x + 3)}{x^2 - 3x + 2}$$

Example 6:

Analyze the graphs of the following rational functions:

(a)
$$f(x) = \frac{2x^2 - 18}{x^2 - 4}$$

(b)
$$h(x) = \frac{x^2 + x}{x}$$

(c)
$$j(k) = \frac{2x^2 - 2}{x^2 - 3x + 2}$$

(d)
$$p(x) = \frac{x}{x^2 - 3x}$$

(e)
$$Q(x) = \frac{2x^3 - 18x}{x^3 - 4x}$$

(f)
$$g(x) = \frac{(x^2 - 2x + 4)(x - 6)}{x^2 - 8x + 12}$$

Example 7:

Construct the equation (in factored form) of a holey graph with holes at x = 1, x = 5, and x = -4, x = 5, and x = -6, a vertical asymptotes at x = 3 and x = 6 with a horizontal asymptote at $y = \frac{2}{3}$.

Here's a quick summary of how to analyze rational functions:

- 1. **Factor**: Factor both the numerator and denominator
- 2. **Domain**: Find the values that make the denominator zero. This will be domain restrictions.
- 3. **Discontinuities**: $\frac{\neq 0}{0}$ means "VA." $\frac{0}{0}$ means "hole."
- 4. **Bad Guy**: Divide out any "bad guy" factors causing a hole. Use the equation that remains for all further analysis, including the *y*-value of the hole.
- 5. **End Behavior**: Find $\lim_{x\to\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$. Graph all HA's and SA's.
- 6. **Intercepts**: Find the *x*-intercepts by determining the zeros of the numerator, and the *y*-intercept from the value of the function at x = 0.
- 7. **Symmetry**: even, odd or neither
- 8. **Sketch the Graph**: Graph all asymptotes first, intercepts next, then combine the other information to fill in the rest of the graph.
- 9. Smile: Pat yourself on the back for a job well done!

Example 8

Graph the rational function $m(x) = \frac{5x^2 + 21x}{x^3 + 10x^2 + 25x}$

Example 9:

Graph the rational function
$$L(x) = \frac{(x^2 - 4x - 5)(x + 2)}{x^2 - x - 6}$$

Example 10:

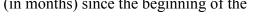
Write an equation of a function with a VA at $x = -\frac{1}{2}$, an SA at y = -3x - 2, a y-intercept at 4, and a hole at x = 500. Find the end behaviors of this function. As $x \to \infty$, what do the slopes of the function approach?

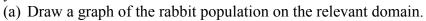
Example 11:

Suppose that the rabbit population on Mr. Korpi's Hairy Hare farm follows the formula

$$P(t) = \frac{3000t}{t+1}$$

Where $t \ge 0$ is the time (in months) since the beginning of the year.





- (b) According the model, what is the initial population of the rabbits? How can this be??
- (c) Using a calculator, what will the rabbit population be after 5.5 months?
- (d) Using a calculator, after how many months will the rabbit population be at 1066 rabbits?
- (e) According to the math model, what eventually happens to the rabbit population, in the long run?

