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Chapter 3.4: Complex Zeros of Polynomials

Imaginary numbers were first encountered in the first century in ancient Greece when 
Heron of Alexandria came across the square root of a negative number in his 
calculation for a truncated pyramid.  He fudged the math and moved on.  They didn’t 
begin to establish a foothold until Italian algebraists began solving cubic and higher-

order equations. Scipione dal Ferro made some progress in this 
field, but he still overlooked the complex roots (“impossible” 
solutions, he called them) lurking in his equations. Instead, it was 
Girolamo Cardano in 1584 who first paved the way for the 
acceptance of BOTH negative and imaginary numbers.  Later, 
Rene Descartes referred to these types of numbers as “imaginary”, and he meant it as 

a derogatory term.  It wasn’t until Euler (in 1777 gave us the symbol i to equal 1 ) 
and Gauss that imaginary numbers, and the complex number system, gained 
acceptance. 

Today, the world wouldn’t be the same without these “imaginary” numbers.  Key fields as quantum 
mechanics and electromagnetism depend on the mathematics of imaginary numbers.  When engineers 
design airplane wings or cell-phone towers, imaginary numbers are vital to their calculations.

In 1799, Carl Friedrich Gauss, at the tender age of 22, earned his first doctorate degree 
with a proof that is fundamental to our study of algebra.  It 
established a theorem that was so dear to him that he went on to 
write three additional, different proofs of the theorem over his 
lifetime, the fourth and final proof coming fifty years after the 
first.  So what was the theorem?

The Fundamental Theorem of Algebra

A polynomial function of degree n has exactly n complex roots (including multiplicities).
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Example 1:

Find all the complex roots of (a)   2 1f x x  and (b)   2 1f x x 

Before we set out to explore the implications of this theorem or find more of these complex roots, we need 
to practice our ability to handle calculations involving imaginary numbers and explore what they really are.

Example 2:

If 1i   , complete the following table. Use your results to simplify 26457i .

2i 

1i 

0i 

1i  

2i 

3i 

4i 

5i 

6i 

Why does this work?  Here’s brief explanation.
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When we say 2 1x   , we really mean 21 1x   .  In this 
sense, we want to know what operation can we perform twice 
to turn a 1 into a 1 .  

 What would multiplying twice by 1 do?
 What would multiplying twice by 1 do?

 How about a counter-clockwise rotation of 90

twice?
 What was that last bullet point again?

This counter-clockwise rotation of 90 is equivalent to 

multiplying by i.  Similarly, a clockwise rotation of 90 is 
equivalent to multiplying by i .

Multiplying twice by i or i rotate us 180 and bring us 
from 1 to 1 .  Thus, there are really TWO squared roots of 

1 : i and i .

This geometric interpretation of imaginary numbers did not 
come until decades after Euler and Gauss began embracing 
them.  This new coordinate plane is called the complex 
coordinate plane, with the real part on the x-axis and the 
imaginary part on the y-axis.

We can now visualize the repeated patterns from Example 1
in terms of our new geometric understanding of rotation.

We already have learned how complex numbers can be entirely real, entirely imaginary, or a combination 
of real and imaginary.  What would a complex number like 1 i look like on the complex plane?
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Example 3:
If 3 6u i  and 4 2v i  , evaluate and simplify the following expressions.  Write all answers in a bi
format.  Sketch your result from (a) on the complex number plane.
(a) u v                                                         (b) 2 3u v                                                      (c) uv                         

(d) 
4

u

i
                                                            (e)

v

u
                                                               (f)

2

3u

v

We’re ready for polynomials now.

Example 4:
Write a general equation of a polynomial function,  f x , in reduced-factored form, whose only complex 

roots are 2x   (m2), 2 3x i  , and 2 3x i  , such that  lim
x

f x


  .

Complex Conjugate Theorem

If a bi is a root of a polynomial function with real coefficients, then its complex conjugate, a bi is also 
a root.  Therefore, complex roots occur in conjugate pairs.
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Example 5:
Using factoring abilities only, find the complete factorization and all zeros for the polynomial 

  5 33 24 48f x x x x   .

Example 6:
Using the rational root theorem and your graphing calculator, find the simplified, exact value of all the 

roots of   4 3 23 2 12 4P x x x x x     .

Example 7:

Find the simplified, exact values of all complex zeros for   2 3 413 46 36 10f x x x x x      if 3 2x i 
is a root.
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Example 8:

Find the simplified, exact complex roots of   5 4 3 22 18 36 81 162f x x x x x x      given that 3x i  is 

a double root of  f x .

Example 9:
Find the particular equation of a polynomial,  f x , in reduced-factored form, whose only roots are 

2 6  ( 2)x i m  , 2 2 2x    , and 1x  , such that  0 25f  .


