TEST: 5.1 – 5.3—Calculator Permitted

Angles, angle measure, applications of angles, & Circular Functions.

Part I: Short Answer—Show all work. No work, no credit.

- _____1. The terminal side of an angle in standard position lies in quadrant IV of the coordinate grid. The radian measure of this angle could be which of the following?
- (A) $\frac{6f}{5}$ (B) $\frac{3f}{4}$ (C) $-\frac{2f}{3}$ (D) $-\frac{7f}{3}$ (E) $\frac{16f}{11}$

- 2. In circle O below, the length of the radius \overline{OB} is 5 feet, and the length of arc \widehat{AB} is 5 feet.

The measure of central angle $\angle AOB$ is which of the following?

- (A) 1 radian
- (B) 60°
- (C) greater than 60°
- (D) f radians
- (E) 5 radians
- 3. Through how many radians does the minute hand of a clock turn in 48 minutes?

- (A) $\frac{6f}{5}$ (B) $\frac{7f}{5}$ (C) $\frac{9f}{5}$ (D) $\frac{8f}{5}$ (E) $\frac{4f}{5}$

- $4. \sec\left(\frac{-47537f}{6}\right) =$
 - (A) $-\frac{\sqrt{3}}{2}$ (B) $\frac{2\sqrt{3}}{3}$ (C) $-\frac{1}{2}$ (D) -2 (E) $-\frac{2\sqrt{3}}{3}$

- 5. The platform of a large merry-go-round is 200 feet in **diameter**. To the nearest **mile per hour**, how fast does a person standing on the outer edge of the platform travel if the merry-go-round makes 6 revolutions per minute? (Hint: someone who's actual foot is actually 1 foot long has a foot that is actually $\frac{1}{5280}$ of a mile long!)
 - (A) 50 mph
- (B) 21 mph
- (C) 43 mph
- (D) 214 mph
- (E) 62 mph

- 7. A wedge-shaped piece of pizza is cut from a 12-inch diameter Archimedian Pizza (main topping is sand, perfectly round, & sliced perfectly through the center). The angle measure of the pointy-piece from the center of the pizza measures 38° . If A is the surface area of the slice and P is the perimeter of the slice, to the nearest whole number, what is the value of A + P?
 - (A) 28
 - (B) 245
- (C) 30
- (D) 296
- (E) 33

- _____ 8. The terminal ray of an angle ℓ passes through the point (-24, -215). If $0^{\circ} \le 4.00^{\circ}$, what is 4.00°
 - (A) 186.369°
- (B) 83.630°
- (C) 96.369°
- (D) 263.630°
- (E) 206.369°

- _____9. If $\sin_{\pi} = -0.4$, then $\sin(-\pi) + \csc_{\pi} =$
 - (A) 0
- (B) -2.9
- (C) 2.1
- (D) -2.1
- (E) 2.9

Part II: Free Response

Show all work below. Avoid intermediate rounding error. Box your final answers, with units when appropriate.

- 10. If $\sec_{\pi} = -6$ and $\cot_{\pi} > 0$
 - (a) Draw the reference triangle for " in the correct quadrant. Show your arc and angle ".

(b) Find the $\underline{simplified}$, \underline{exact} , $\underline{rationalized}$ value of \csc , .

(c) Find the **simplified**, **exact**, **rationalized** value of tan ".

(d) Find the reference angle, $_{"ref}$, for $_{"}$	in degrees.	Show the equation	you are solving and report
decimals.			

(f) In terms of $\, _{\scriptscriptstyle 0}$, what is the slope of terminal ray?