

Date

Period

TEST: 5.1 – 5.3—Calculator Permitted

Angles, angle measure, applications of angles, & Circular Functions.

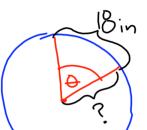
Part I: Multiple Choice

- 1. Which of the following angles is coterminal with $\frac{-45049\pi}{4}$? $-\frac{11}{4}$ $+\frac{8\pi}{4}$ $=\frac{2\pi}{4}$ (C) $\frac{5\pi}{4}$ (D) $\frac{7\pi}{4}$ (E) $\frac{3\pi}{2}$

 $\frac{6\pi}{19}$ expressed in degrees, minutes, seconds is

19 (A) 570°0′0″ (B) 178°34′29.065″ (C) 56°50′31.579″ (D) 18°5′36.255″ (E) 181°26′11.886″

 $\frac{1}{2}$ 3. For $\theta = 276.798^{\circ}$, Find the reference angle, θ_{ref}


- (A) 6.798° (B) 83.202° (C) 273.656° (D) 276.798° (E) $\frac{\pi}{6}$

4. The angle $\theta = -47845168^{\circ}$ terminates in which quadrant?

- (A) I
- (B) II $\theta_{col} = 272$
- (D) IV
- (E) on an axis

5. As shown in the diagram at right, find the radius of a circle if an arc length of 18 inches is subtended by a central angle of $\theta = \frac{3\pi}{10}$.

- (A) $\frac{60}{\pi}$ in (B) $\frac{30}{\pi}$ in (C) $\frac{120}{\pi}$ in (D) $\frac{1}{3}$ in (E) 3in

6. Find the arc length of a circle of radius 14 feet subtended by a central angle of 39°.

(A)
$$\frac{39}{14}$$
 ft

- 7. The radius of a car wheel is 15 inches. How many revolutions per minute (rpm) is the wheel making when the car is travelling at 30 mph? Round your answer to the nearest rpm.
 - (A) 9 rpm
- (B) 336 rpm
- (C) 2101 rpm
- (D) 3318 rpm

(A)
$$\frac{57\pi}{10}$$
 in (B) $\frac{57\pi}{20}$ in (C) $\frac{19\pi}{270}$ in (D) $\frac{19\pi}{540}$ in

(B)
$$\frac{57\pi}{20}$$
 in

(C)
$$\frac{19\pi}{270}$$
 in

(D)
$$\frac{19\pi}{540}$$
 in

$$S = (9 \text{ in}) \left(\frac{19}{60} \cdot 2\pi \right) = \frac{57\pi}{10} \text{ in}$$

- 2. A pizza slice from a 20-inch diameter pizza has a central angle of 35°. What is the area, in square inches, of this slice?

(B)
$$\frac{7\pi}{36}$$

(A) 700 (B)
$$\frac{7\pi}{36}$$
 (C) $\frac{350\pi}{9}$ (D) $\frac{35\pi}{18}$ (E) $\frac{175\pi}{18}$

(D)
$$\frac{35\pi}{18}$$

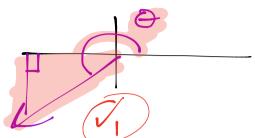
(E)
$$\frac{175\pi}{18}$$

$$A = \pm (10^{2})(35^{\circ} \times \frac{11}{180^{\circ}}) = \frac{17+5\pi}{18}$$

Part II: Free Response

Show all work below. Avoid intermediate rounding error. Box your final answers, with units when appropriate.

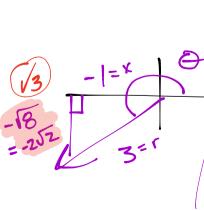
10. If $\sec \theta = -3$ and $\csc \theta < 0$



and escore

(a) Draw the reference triangle for θ in the correct quadrant. Show your arc and angle θ

$$SeC\theta = \frac{-3}{1} = \frac{r}{x} = \frac{3}{-1}$$



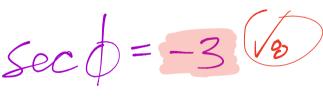
(b) Find the **simplified**, **exact**, **rationalized** value of $\cos \theta$.

$$\cos\theta = -\frac{1}{3} V_Z$$

(c) Find the **simplified**, **exact**, **rationalized** value of $\cot \theta$.

$$\frac{y = \pm 18}{y = \pm 2\sqrt{2}}$$

$$= \frac{1}{\sqrt{8}} = \frac{1}{\sqrt{8}} = \frac{1}{\sqrt{18}} = \frac{1}{2\sqrt{2}} = \frac$$


(d) Find the reference angle, θ_{ref} , for θ in degrees. Show the equation you are solving and report 3 decimals.

$$\begin{array}{ll}
\Theta = \cos^{2}(-\frac{1}{3}) & \sqrt{5} \\
\Phi = + \sin^{2}(2\sqrt{2}) & \sqrt{5} \\
O = \sin^{2}(-2\sqrt{2}) & \sqrt{5}
\end{array}$$

(e) Find the actual value of θ such that $\theta \in [0^{\circ}, 360^{\circ}]$.

$$\theta = 180^{\circ} + \theta_{ref}$$
 $\theta = 250.528^{\circ}$ (V7)
 250.529°

(f) If ϕ is a coterminal angle to θ such that $\phi = \theta - (45)(360^{\circ})$, what is the **simplified**, **exact value** of $\sec \phi$?

Bolieks