PreAP Precalculus

TEST Chapter 3.1-3.2 Form A. No Calculator Permitted

Part I: Multiple Choice—Put your CAPITAL LETTER answer choice in the blank to the left of the number.

- 1. Let R, S, T, and V be the roots of $f(x) = 2x^4 3x^3 24x^2 + 13x + 12$. If $f\left(-\frac{1}{2}\right) = 0$ and if (x-1)is a factor of f(x), find the product *RSTV*.
 - (A) -6
- (B) 6
- (C) 12
- (D) -12
- (E) 3
- 2. Which of the following MUST be true about a polynomial function of odd degree?
 - (A) It is an odd function
- (B) It has the same end behaviors
- (C) It has at least one real root

- (D) It has an even number of irrational roots
- (E) It has an odd number of relative extrema
- 3. A linear factor of $2x^3 6x^2 48x + 160$ is (x+5) and what other factor?
 - (A) x + 2 (B) x + 3
- (C) x-2
- (D) x 3 (E) x 4

- 4. The value of k that will make (x-1) a factor of $g(x) = kx^3 17x^2 4kx + 8$ is:
 - (A) -3

- (B) 3
- (C) -5
- (D) 4
- (E) -1

- 5. Which of the specified functions might have the given graph?

- (A) $f(x) = x(x+2)^2 (x-2)^3$ (B) $f(x) = -x^2 (x+2)(x-2)^3$ (C) $f(x) = x(x+2)^2 (x-2)^3$ (D) $f(x) = x(x+2)^2 (2-x)^3$

 - (E) $f(x) = -x(x+2)^3(x-2)^2$

6. If a polynomial	function with rational coe	efficients of degree 7	has roots of $0, -1$,	2, $\sqrt{2} + 1$ and
$4-6\sqrt{5}$, then a	nother root must be:			
(A) $\sqrt{2} - 1$	(B) $1 - \sqrt{2}$	(C) $-4-6\sqrt{5}$	(D) $-\sqrt{2}-1$	(E) $-4+6\sqrt{5}$

- (A) $\sqrt{2} 1$

- _____7. What is the remainder when $f(x) = 4(x-2)^{33} 7$ is divided by (x-1)?
- (B) -3 (C) 3
- (D) 11

- 8. An equation of a polynomial of the form $y = A \cdot f(x)$ of lowest degree with rational coefficients and the following characteristics $f(2) = f(-3) = f(\sqrt{3}) = 0$ and f(1) = 4, has a vertical dilation value of A = 1

 - (A) 4 (B) $-\frac{2}{3}$ (C) -2 (D) $\frac{1}{2}$ (E) 2

- 9. An equation of an 9th degree polynomial with a negative leading coefficient whose only roots are x = -5(m3), x = -1(m2), x = 3(m3) and x = 5(m1) has exactly how many relative extrema?
 - (A) 4
- (B) 5
- (C) 6
- (D) 7
- (E) 8

Part II:	Free Resp	onse—Show	all work in	the space	provided.	Use pro	per notation.

10. For $f(x) = 30 + 56x - 25x^2 - 32x^3 + 5x^4 + 2x^5$

(a) Find the range of $f(x)$.
(h) What is the condition to () after a intercent?
(b) What is the coordinate, (x, y) , of the <i>y</i> -intercept?
(a) List the distinct neggible rational roots of $f(u)$. According to the Dational Boot Theorem, how many
(c) List the distinct, possible, rational roots of $f(x)$. According to the Rational Root Theorem, how many
distinct possible roots of $f(x)$ are there?
(d) Determine both the left and right end behaviors. Use proper limit notation.
(a) Determine both the left and right one behaviors. Ose proper finit notation.

(e) Given that $f(-\sqrt{2}) = 0$ and $(x+5)$ is a factor of $f(x)$, use (and show) synthetic division to find the roots
of $f(x)$. List ALL the roots of $f(x)$ at the end as $x =$