PreAP Precalculus

TEST Chapter 3.1-3.2 Form A. No Calculator Permitted

Part I: Multiple Choice—Put your CAPITAL LETTER answer choice in the blank to the left of the number.

1. Let R, S, T, and V be the roots of $f(x) = 2x^4 - 3x^3 - 24x^2 + 13x + 12$. If $f\left(-\frac{1}{2}\right) = 0$ and if (x-1)

is a factor of f(x), find the product RSTV.

(A) -6

(B) 6

2. Which of the following MUST be true about a polynomial function of odd degree?

- (A) It is an odd function
- (B) It has the same end behaviors (C) It has at least one real root
- (D) It has an even number of irrational roots
- (E) It has an odd number of relative extrema
- \mathbb{E} 3. A linear factor of $2x^3 6x^2 48x + 160$ is (x+5) and what other factor?

(A)
$$x + 2$$

(B)
$$x + 3$$

(C)
$$x-2$$

(D)
$$x - 3$$

(E)
$$x-4$$

(B)
$$x + 3$$
 (C) $x - 2$
2 -46 -48 -46
2 -10 80 -46
2 -16 32 10
2 $(x^2 - 8x + 16) = 0$
2 $(x - 4)^2 = 0$

 \triangle 4. The value of k that will make (x-1) a factor of $g(x) = kx^3 - 17x^2 - 4kx + 8$ is:

$$(A) -3$$

(B)
$$3$$

$$(C) -5$$

(C) -5 (D) 4

$$g(1) = K - /7 - 4k + 8 = 0$$

 $-3k = 9$
 $k = -3$

5. Which of the specified functions might have the given graph?

(A)
$$f(x) = -\chi(x+2)^2 (2-\chi)^3$$
 (B) $f(x) = -x^2 (x+2)(x-2)^3$

(B)
$$f(x) = -x^2(x+2)(x-2)^3$$

(C)
$$f(x) = x(x+2)^2(x-2)$$

(C)
$$f(x) = x(x+2)^2(x-2)^3$$
 (D) $f(x) = x(x+2)^2(2-x)^3$

(E)
$$f(x) = -x(x+2)^3(x-2)^2$$

- 6. If a polynomial function with rational coefficients of degree 7 has roots of 0, -1, 2, $\sqrt{2}$ +1 and $-\sqrt{2}$ +1 or $|-\sqrt{2}|$ $4-6\sqrt{5}$, then another root must be:
 - (A) $\sqrt{2} 1$
- (B) $1 \sqrt{2}$
- (C) $-4-6\sqrt{5}$ (D) $-\sqrt{2}-1$ (E) $-4+6\sqrt{5}$

- 7. What is the remainder when $f(x) = 4(x-2)^{33} 7$ is divided by (x-1)?

(E) 2

(B) -3 (C) 3

$$f(1) = 4(-1)^{33} - 7$$

 $= -4 - 7$
 $= -(1)$

- 8. An equation of a polynomial of the form $y = A \cdot f(x)$ of lowest degree with rational coefficients and the following characteristics $f(2) = f(-3) = f(\sqrt{3}) = 0$ and f(1) = 4, has a vertical dilation value of A = 1
 - (A) 4 (B) $-\frac{2}{3}$ (C) -2 (D) $\frac{1}{2}$ $f(x) = A(x-2)(x+3)(x-\sqrt{3})(x+\sqrt{3})$ $f(x) = A(x-2)(x+3)(x^2-3)$ e(1,4) = A(-1)(4)(-2) $f(x) = A(x-2)(x+3)(x^2-3)$

- An equation of an 9th degree polynomial with a negative leading coefficient whose only roots are x = -5(m3), x = -1(m2), x = 3(m3) and x = 5(m1) has exactly how many relative extrema?
 - (A) 4
- (B) 5
- (C) 6
- (D) 7
- (E) 8

Part II: Free Response—Show all work in the space provided. Use proper notation.

- 10. For $f(x) = 30 + 56x 25x^2 32x^3 + 5x^4 + 2x^5$
- (a) Find the range of f(x). $f(x) = 2x^{2} + 5x^{4} - 32x - 25x^{2} + 5xx + 30$ $P_{f}: \mathbb{R} \quad \text{or} \quad (-\infty, \infty) \quad \text{or} \quad \{y \mid y \in \mathbb{R}\} \quad \text{for} \quad (-\infty, \infty) \quad \text{or} \quad \{y \mid y \in \mathbb{R}\} \quad \text{for} \quad (-\infty, \infty) \quad \text{or} \quad \{y \mid y \in \mathbb{R}\} \quad \text{for} \quad (-\infty, \infty) \quad \text{or} \quad \{y \mid y \in \mathbb{R}\} \quad \text{for} \quad (-\infty, \infty) \quad \text{or} \quad \{y \mid y \in \mathbb{R}\} \quad \text{for} \quad (-\infty, \infty) \quad \text{or} \quad \{y \mid y \in \mathbb{R}\} \quad \text{for} \quad (-\infty, \infty) \quad \text{or} \quad \{y \mid y \in \mathbb{R}\} \quad \text{for} \quad (-\infty, \infty) \quad \text{for} \quad (-\infty, \infty) \quad \text{or} \quad \{y \mid y \in \mathbb{R}\} \quad \text{for} \quad (-\infty, \infty) \quad (-\infty, \infty)$
- (b) What is the coordinate, (x, y), of the y-intercept?

$$f(0) = 30$$

(c) List the distinct, possible, rational roots of f(x). According to the Rational Root Theorem, how many distinct possible roots of f(x) are there?

30:
$$\pm (1 \pm 30, \pm 2, \pm 15, \pm 3, \pm 10, \pm 5, \pm 6, \pm 1, \pm 2)$$

(d) Determine both the left and right end behaviors. Use proper limit notation.

$$\lim_{X \to -\infty} f(x) = -\infty \quad (\sqrt{5})$$

(e) Given that $f(-\sqrt{2}) = 0$ and (x+5) is a factor of f(x), use (and show) synthetic division to find the roots of f(x). List ALL the roots of f(x) at the end as $x = -\infty$

So, f has roots of
$$k = -5, -\sqrt{2}$$
, $\sqrt{2}$,