Name Date Period	Į
------------------	---

PreAP Precalculus

TEST Chapter 2.1-2.5, Form A. No Calculator

Part I: Multiple Choice

Put your CAPITAL LETTER answer choice in the blank to the left of the number.

_____1. In the function $g(x) = \frac{1}{3x+2}$, the 3 horizontally compresses the graph of $f(x) = \frac{1}{x+\frac{2}{3}}$ by a factor

of 3. This is equivalent to what other transformation on the graph of f to produce the graph of g? (A) Vertical stretch bfo 3 (B) Horizontal stretch bfo 3 (C) Vertical compressions bfo 3

(D) Vertical compression bfo $\frac{3}{2}$ (E) Vertical stretch bfo $\frac{3}{2}$

2. If $g(x) = 5\sqrt{\frac{1}{2} - 2x}$, h(x) = 4 - 4x, and j(x) = 5 + 5x, what is the domain of $p(x) = \frac{g(x)}{(h \circ j)(x)}$

(A)
$$\left\{ x \middle| x \ge -\frac{1}{4}, \ x \ne \frac{4}{5} \right\}$$
 (B) $\left\{ x \middle| x \le -1, \ x \ne \frac{5}{4} \right\}$ (C) $\left\{ x \middle| x \le 1, \ x \ne \frac{4}{5} \right\}$ (D) $\left\{ x \middle| x \le \frac{1}{4}, \ x \ne -\frac{4}{5} \right\}$ (E) $\left\{ x \middle| x \ge \frac{1}{4}, \ x \ne \frac{5}{4} \right\}$

_____3. If $Q(x) = \frac{3}{4x-1}$, find two functions, f and g, such that h(x) = f(g(x)).

(A)
$$g(x) = 4x$$
, $f(x) = \frac{3}{x}$ (B) $g(x) = \frac{3}{4}x$, $f(x) = \frac{1}{x-1}$
(C) $g(x) = 4x - 1$, $f(x) = \frac{3}{x}$ (D) $g(x) = 4x - 1$, $f(x) = 3x$ (E) $g(x) = \frac{3}{x}$, $f(x) = \frac{4}{3}x - 1$

_____4. If f(g(x)) = x = g(f(x)) and if $g(x) = \frac{-3x+2}{7x+5}$, then the range of f(x) is

$$(A)\left(-\infty,-\frac{3}{7}\right)\cup\left(-\frac{3}{7},\infty\right) \quad (B)\left(-\infty,-\frac{5}{7}\right)\cup\left(-\frac{5}{7},\infty\right) \quad (C)\left(-\infty,\frac{2}{5}\right)\cup\left(\frac{2}{5},\infty\right) \quad (D)\left(-\infty,\frac{2}{3}\right)\cup\left(\frac{2}{3},\infty\right) \quad (E) \mathbb{R}$$

_____ 5. If $f(x) = -4e^x + 5$, what is the range of g(x) = |f(x)|?

- (A) $(5,\infty)$ (B) $(-\infty,5)$ (C) $[0,\infty)$ (D) $(-\infty,0]$ (E) $(-\infty,1]$

_____6. If $f(x) = 3 - \ln(2 + 5x)$, what is the domain of f(x)?

- (A) $\left\{ x \middle| x < \frac{2}{5} \right\}$ (B) $\left\{ x \middle| x \le \frac{2}{5} \right\}$ (C) $\left\{ x \middle| x < -\frac{2}{5} \right\}$ (D) $\left\{ x \middle| x \ge -\frac{2}{5} \right\}$ (E) $\left\{ x \middle| x > -\frac{2}{5} \right\}$

7. If $f(x) = \sqrt{2x+1}$ and $g(x) = \frac{3}{x-5}$, what is the domain of $h(x) = (g \circ f)(x)$?

- $(A) \left[-\frac{1}{2}, 12 \right] \cup \left(12, \infty \right) \quad (B) \left[-\frac{1}{2}, \infty \right] \quad (C) \left(-\frac{1}{2}, 12 \right) \cup \left(12, \infty \right) \quad (D) \left(-\frac{1}{2}, \infty \right) \quad (E) \left[-\frac{1}{2}, 5 \right] \cup \left(5, \infty \right)$

_____ 8. Find the range of $f(x) = -3e^{4x-2} + 5$

- (A) $\left(-\infty,3\right)$ (B) $\left(-\infty,\frac{1}{2}\right)$ (C) $\left(\frac{1}{2},\infty\right)$ (D) $\left(-\infty,5\right)$ (E) $\left(5,\infty\right)$

Part II: Free Response

Show all work in the space provided. <u>Use proper notation</u>, and box your final answers. Remember that on this section, your PROCESS is as important as your PRODUCT. BE SURE TO NAME EACH OF YOUR FUCNTIONS.

9. For
$$f(x) = \frac{8}{3} + \frac{4}{5}e^{\left(2 - \frac{2}{7}x\right)}$$

(a) Write f(x) as an **equation** in standard transformation form.

(b) Using your answer from part (a), describe the proper sequence of transformations on the parent function to obtain the graph of f(x).

(c) Find the **simplified**, **exact value** of the *y*-intercept (your answer will have a visible *e* in it.) Show the work that leads to your answer.

(d) Sketch $f(x)$ showing the basic shape, location, y-intercept, and any/all asymptotes.
(e) Find D_f :
(f) Find R_f :
f.
(g) Find the equation (s) of any/all asymptotes. Be sure to label which type each is (Horizontal or Vertical).
$\lim_{x \to \infty} f(x) =$
$\lim_{(h)} \lim_{x \to \infty} f(x) =$