
PreAP Precalculus

TEST Chapter 2.1-2.3, Form A. No Calculator

Part I: Multiple Choice, Put your CAPITAL LETTER answer choice in the blank to the left of the number.

Use the graph of f(x) below for $-3 \le x \le 5$ to answer questions 1-5.

- $1. \quad \lim_{x \to -1} f(x) =$
- (A) -1
- (B) 0
- (C) 1
- (D) 2
- (E) DNE

2. f(x) is monotonic/strictly increasing on which of the following given intervals?

- (A) (-3,-2)
- (B) (-1,2)
- (C)(1,2)
- (D) (3,4)
- (E) (-2,-1)

 $\underline{}$ 3. f(x) has a relative/local minimum of

- (A) 5
- (B) -1
- (C) 3
- (D) 2
- (E) f(x) has no relative/local minimum

4. f(x) has a relative/local maximum at

- (A) 1
- (B) -1
- (C)3
- (D) -2
- (E) f(x) has no relative/local maximum

5. Which of the following is NOT true about the graph of f(x)?

- (A) f(x) is continuous at x = 0
- (B) $\lim_{x \to 2^{-}} f(x) = f(-1)$ (C) $\lim_{x \to 1} f(x) = DNE$

(D) f(x) has a local max of 2.

(E) f(x) has a local min of -1 at 2.

6. If $h(x) = 2x^2 + 5$, find the average rate of change of $h(x)$ on the interval	x ∈	_1 3	1
$\underline{\underline{}}$ 0. If $h(x) = 2x + 5$, find the average rate of change of $h(x)$ on the interval	$\lambda \subseteq I$	$-1, \mathcal{I}$	ŀ

(A)
$$\frac{21}{4}$$
 (B) $\frac{17}{4}$ (C) 8

(B)
$$\frac{17}{4}$$

8. Which of the following is true about
$$f(x) = \frac{2x^2 - 15x - 8}{x^3 - 7x^2 - 8x}$$

(A)
$$f(x)$$
 has a vertical asymptote at $x = 8$

(B)
$$f(x)$$
 is an odd function (C) $\lim_{x \to -\infty} f(x) = \infty$

(C)
$$\lim_{x \to -\infty} f(x) = \infty$$

(D)
$$f(x)$$
 has a hole at $\left(8, \frac{11}{72}\right)$

(D)
$$f(x)$$
 has a hole at $\left(8, \frac{11}{72}\right)$ (E) $f(x)$ has horizontal asymptote at $y = 0$

9. The function
$$f(x) = \begin{cases} 3x+4, & x < -1 \\ 2, & x = -1 \\ 2x^2 - 1, & x > -1 \end{cases}$$

(A) has a jump at
$$x = -1$$
 (B) has a hole at $x = -1$ (C) has a VA at $x = -1$

(D) is continuous at
$$x = -1$$
 (E) is an even function

Part II: Free Response

Show all work in the space provided. Use proper notation and show all steps. Remember that on this section, your PROCESS is as important as your PRODUCT.

Given

$$f(x) = 2x^2 - 2x - 24 g(x) = x^2 + 3x - 28 k(x) = 3x^9 - 7x^5 + x^3 - 2x p(x) = -2x^6 + 8x^4 + 1$$
10. Let $h(x) = \frac{g(x)}{f(x)}$

(a) Find the domain of
$$h(x)$$
.

(b) Find the **equation** of any vertical asymptote of
$$h(x)$$
.

(c) Find the **coordinate**,
$$(x, y)$$
, of any removable point discontinuity of $h(x)$.

(d) Find the **equation** of any horizontal asymptote of h(x).

(e) Find the **coordinate**, (x, y), of any x-intercepts of h(x).

11. Let
$$m(x) = \frac{k(x)}{p(x)}$$

(a) Is $m(x)$ is even, odd, or neither. Justify

(b) Find
$$\lim_{x\to\infty} m(x)$$

(c) Find the y-intercept of m(x). List it as an ordered pair.