PCPAP TEST: Chapter 1.1-2.2 2016-A

No Calculator

Part I: Multiple Choice. Put the CAPITAL letter in each blank to the left of the problem number.

The graph of g(x) is give at right. Use the graph to answer questions 1-4.

_____2.
$$\lim_{x \to 0} g(x) =$$
 (A) 2 (B) 3 (C) 4 (D) 5 (E) DNE

_____5. The function $f(x) = \frac{x^2 + 10x + 9}{x^2 + 6x + 5}$ has a removable point discontinuity at

(A)
$$\left(-1,2\right)$$
 (B) $\left(-9,0\right)$ (C) $\left(-5,2\right)$ (D) $\left(0,\frac{9}{5}\right)$ (E) $\left(-1,-2\right)$

 $\frac{4x^2y^{-2} + 3x^{-2}y^3}{xy^{-1} + 2x}$

(A)
$$\frac{4x^4 + 3y^5}{x^3y + 2x^3y^2}$$
 (B) $\frac{4x^4 + 3y^5}{x^3y + 2x^3y}$ (C) $\frac{4x^4y + 3xy^5}{xy + 2x^3y}$ (D) $\frac{4xy + 3y^2}{x^2y + 2x^2}$ (E) $\frac{4x^4 + 3y^5}{2x^3y + x^3y^2}$

$$\lim_{x \to \infty} \frac{3x^5 - 2x^7 + 7}{-3x^6 - 5x^3 + 4x^2}$$
(A) 0 (B) $\frac{5}{3}$ (C) $-\frac{5}{3}$ (D) ∞ (E) $-\infty$

8. Find the domain of
$$k(x) = \frac{\sqrt{x-3}}{\sqrt{x^2 - 6x - 16}}$$
(A) $(8,\infty)$ (B) $[3,8) \cup (8,\infty)$ (C) $(-5,4)$ (D) $(-\infty,-2) \cup (8,\infty)$ (E) $[3,\infty)$

9. Which of the following is NOT an equation of an asymptote on the graph of

$$f(x) = \frac{x+4}{x^3+5x^2+6x}$$

- (A) y = 0 (B) x = -2 (C) x = -4 (D) x = 0 (E) x = -3

Show all work in a logical, vertical sequence and use proper notation. Your bottom line in each problem will be your answer. Work each problem in the space provided.

- 10. For the following functions, $f(x) = 5 + 2\sqrt{12 + 4x}$, $g(x) = \sqrt{x 11}$, $h(x) = x^2 + 6x 16$ answer the following questions.
 - (a) Set up and simplify the **equation** for the function P(x) = g(h(x)), and then find the domain. Show the work that leads to your answer. Give your domain in either proper set or interval notation.

(b) Set up the **equation** for the function $R(x) = \frac{2x-8}{g(x)}$, and then find the domain of R(x). Show the work that leads to your answer. Give your domain in either proper set or interval notation.

(d) Set up and **completely simplify** $\frac{h(x+p)-h(x)}{p}$ for some constant w. Show the work that leads to your answer.