TEST Taylor Polynomials and Taylor Series

Calculator Permitted

Multiple Choice

_____1. The Taylor series for $\sin x$ about x = 0 is $x - \frac{x^3}{3!} + \frac{x^5}{5!} - \cdots$. If f is a function such that

 $f'(x) = \sin(x^2)$, then the coefficient of x^7 in the Taylor series for f(x) about x = 0 is

- (A) $\frac{1}{7!}$ (B) $\frac{1}{7}$ (C) 0 (D) $-\frac{1}{42}$ (E) $-\frac{1}{7!}$
- _____2. What are all values of x for which the series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n \cdot 3^n}$ converges?
- (B) -3 < x < 3 (C) $-1 < x \le 5$ (D) $-1 \le x \le 5$ (E) $-1 \le x < 5$
- 3. Let f be the following function given by $f(x) = \ln(3-x)$. The third-degree Taylor polynomial for f about x = 2 is
- (A) $-(x-2) + \frac{(x-2)^2}{2} \frac{(x-2)^3}{3}$ (B) $-(x-2) \frac{(x-2)^2}{2} \frac{(x-2)^3}{3}$ (C) $(x-2) + (x-2)^2 + (x-2)^3$ (D) $(x-2) + \frac{(x-2)^2}{2} + \frac{(x-2)^3}{2}$ (E) $(x-2) - \frac{(x-2)^2}{2} + \frac{(x-2)^3}{2}$
- _____4. If $f(x) = \sum_{k=1}^{\infty} (\sin^2 x)^k$, then f(1) is (A) 0.369
- (B) 0.585
- (C) 2.400
- (D) 2.426
- (E) 3.426
- 5. A function f has Maclaurin series given by $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$ Which of the following is an expression for f(x)?

- (A) $\cos x$ (B) $e^x \sin x$ (C) $e^x + \sin x$ (D) $\frac{1}{2} (e^x + e^{-x})$ (E) e^{x^2}

Free Response

(2002-BC6) The Maclaurin series for the function f is given by

$$f(x) = \sum_{n=0}^{\infty} \frac{(2x)^{n+1}}{n+1} = 2x + \frac{4x^2}{2} + \frac{8x^3}{3} + \frac{16x^4}{4} + \dots + \frac{(2x)^{n+1}}{n+1} + \dots$$

on its interval of convergence.

- (a) Find the interval of convergence of the Maclaurin series for f. Justify your answer.
- (b) Find the first four terms and the general term for the Maclaurin series for f'(x).
- (c) Use the Maclaurin series you found in part (b) to find the value of $f'\left(-\frac{1}{3}\right)$.