TEST BC CH 8.1-9.1

No Calculator (except on F.R., #13 & #14)

- I. Multiple Choice: Put the capital letter of the correct answer in the blank.
- _____ 1. At time $t \ge 0$, a particle moving in the *xy*-plane has velocity vector given by $v(t) = \langle t^2, 5t \rangle$. What is the acceleration vector of the particle at time t = 3?
 - (A) $\left\langle 9, \frac{45}{2} \right\rangle$ (B) $\left\langle 6, 5 \right\rangle$ (C) $\left\langle 2, 0 \right\rangle$ (D) $\sqrt{306}$ (E) $\sqrt{61}$

- _____2. Consider the series $\sum_{n=1}^{\infty} \frac{e^n}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?

- (A) $\lim_{n\to\infty} \frac{e}{n!} < 1$ (B) $\lim_{n\to\infty} \frac{n!}{e} < 1$ (C) $\lim_{n\to\infty} \frac{n+1}{e} < 1$ (D) $\lim_{n\to\infty} \frac{e}{n+1} < 1$ (E) $\lim_{n\to\infty} \frac{e}{(n+1)!} < 1$

- 3. Which of the following gives the length of the path described by the parametric equations $x = \sin t^3$ and $y = e^{5t}$ from t = 0 to $t = \pi$?
- (A) $\int_{0}^{\pi} \sqrt{\sin^{2}(t^{3}) + e^{10t}} dt$ (B) $\int_{0}^{\pi} \sqrt{\cos^{2}(t^{3}) + e^{10t}} dt$ (C) $\int_{0}^{\pi} \sqrt{9t^{4}\cos^{2}(t^{3}) + 25e^{10t}} dt$
 - (D) $\int_{0}^{\pi} \sqrt{3t^2 \cos^2(t^3) + 5e^{10t}} dt$ (E) $\int_{0}^{\pi} \sqrt{\cos^2(3t^2) + e^{10t}} dt$

4.	Let <i>R</i> be the	region between	the graph of	$y = e^{-2x}$	and the <i>x</i> -axis for	$x \ge 3$.	The area of R is

(A)
$$\frac{1}{2e^6}$$
 (B) $\frac{1}{e^6}$ (C) $\frac{2}{e^6}$ (D) $\frac{\pi}{2e^6}$ (E) infinite

(B)
$$\frac{1}{e^6}$$

(C)
$$\frac{2}{e^6}$$

(D)
$$\frac{\pi}{2e^6}$$

5. Which of the following expressions gives the total area enclosed by the polar curve $r = \sin^2 \theta$ shown in the figure?

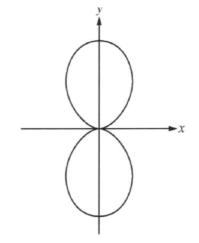
(A)
$$\frac{1}{2}\int_{0}^{\pi}\sin^{2}\theta d\theta$$

(B)
$$\int_{0}^{\pi} \sin^{2}\theta d\theta$$

(A)
$$\frac{1}{2} \int_{0}^{\pi} \sin^{2}\theta d\theta$$
 (B) $\int_{0}^{\pi} \sin^{2}\theta d\theta$ (C) $\frac{1}{2} \int_{0}^{\pi} \sin^{4}\theta d\theta$ (D) $\int_{0}^{\pi} \sin^{4}\theta d\theta$ (E) $2 \int_{0}^{\pi} \sin^{4}\theta d\theta$

(D)
$$\int_{0}^{\pi} \sin^{4}\theta \, d\theta$$

(E)
$$2\int_{0}^{n} \sin^{4}\theta d\theta$$



6. Let f be a positive, continuous, decreasing function such that $a_n = f(n)$. If $\sum_{n=1}^{\infty} a_n$ converges to k, which of the following must be true?

(A)
$$\lim_{n\to\infty} a_n = k$$

(B)
$$\int_{1}^{n} f(x) dx = k$$

(C)
$$\int_{-\infty}^{\infty} f(x) dx$$
 diverges

(A)
$$\lim_{n \to \infty} a_n = k$$
 (B) $\int_1^n f(x) dx = k$ (C) $\int_1^{\infty} f(x) dx$ diverges (D) $\int_1^{\infty} f(x) dx$ converges (E) $\int_1^{\infty} f(x) dx = k$

(E)
$$\int_{1}^{\infty} f(x) dx = k$$

	∞			
7. If	$\sum a_n$ diverges and	$0 \le a_n \le b_n$ for all n ,	which of the following	statements must be true?
	n=1			

- (A) $\sum_{n=1}^{\infty} (-1)^n a_n$ converges (B) $\sum_{n=1}^{\infty} (-1)^n b_n$ converges (C) $\sum_{n=1}^{\infty} (-1)^n b_n$ diverges
 - (D) $\sum_{n=1}^{\infty} b_n$ converges (E) $\sum_{n=1}^{\infty} b_n$ diverges

_____ 8. What are all values of p for which $\int_{1}^{\infty} \frac{1}{x^{2p}} dx$ converges?

- (A) p < -1 (B) p > 0 (C) $p > \frac{1}{2}$ (D) p > 1

(E) There are no values of p for which this integral converges.

9. The position of a particle moving in the xy-plane is given by the parametric equations $x = t^3 - 3t^2$ and $y = 2t^3 - 3t^2 - 12t$. For what values of t is the particle at rest?

- (D) -1 and 2 only
- (E) -1, 0, and 2

10	What is the value of	$\sum_{n=1}^{\infty} 2^{n+1}$
10.	what is the value of	$\frac{2}{3^n}$

- (A) 1 (B) 2

- (C) 4 (D) 6 (E) The series diverges

_____11. What are all values of
$$p$$
 for which the infinite series $\sum_{n=1}^{\infty} \frac{n}{n^p + 1}$ converges?

(A) $p > 0$ (B) $p \ge 1$ (C) $p > 1$ (D) $p \ge 2$ (E) $p > 2$

I.
$$\sum_{n=0}^{\infty} \left(\frac{\sin 2}{\pi} \right)^n \quad \text{II. } \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} \quad \text{III. } \sum_{n=1}^{\infty} \left(\frac{e^n}{e^n + 1} \right)$$

II.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$

III.
$$\sum_{n=1}^{\infty} \left(\frac{e^n}{e^n + 1} \right)$$

- (A) III only

- (B) I and II only (C) I and III only (D) II and III only
- (E) I, II, and III

13. For $t \ge 0$, a particle is moving along a curve so that its position at time t is $\left(x(t), y(t)\right)$. At time t = 2, the

particle is at position (1,5). It is known that $\frac{dx}{dt} = \frac{\sqrt{t+2}}{e^t}$ and $\frac{dy}{dt} = \sin^2 t$.

(a) Is the horizontal movement of the particle to the left or to the right at time t = 2. Explain your answer. Find the slope of the path of the particle at time t = 2.

(b) Find the *x*-coordinate of the particle's position at time t = 4.

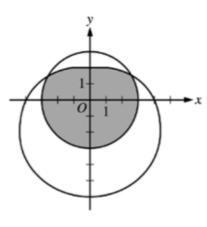
(c) Find the speed of the particle at time t = 4. Find the acceleration vector of the particle at time t = 4.

(d) Find the distance traveled by the particle from time t = 2 to t = 4.

14. (Calculator Permitted) The graphs of the polar curves r=3 and $r=4-2\sin\theta$ are shown in the figure at right. The curves intersect when

$$\theta = \frac{\pi}{6}$$
 and $\theta = \frac{5\pi}{6}$.

(a) Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 - 2\sin\theta$. Find the area of S.



(b) A particle moves along the polar curve $r = 4 - 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.

(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.