TEST BC CH 7.1-8.2

Calculator Permitted

- I. Multiple Choice: Put the capital letter of the correct answer in the blank.
- _ 1. Which of the following is equal to the area of the region inside the polar curve $r = 2\cos\theta$ and outside the polar curve $r = \cos \theta$?

(A)
$$3\int_{0}^{\pi/2}\cos^2\theta d\theta$$

(B)
$$3\int_{0}^{\pi} \cos^{2}\theta d\theta$$

(A)
$$3\int_{0}^{\pi/2}\cos^{2}\theta d\theta$$
 (B) $3\int_{0}^{\pi}\cos^{2}\theta d\theta$ (C) $\frac{3}{2}\int_{0}^{\pi/2}\cos^{2}\theta d\theta$ (D) $3\int_{0}^{\pi/2}\cos\theta d\theta$ (E) $3\int_{0}^{\pi}\cos\theta d\theta$

(D)
$$3\int_{0}^{\pi/2}\cos\theta d\theta$$

(E)
$$3\int_{0}^{\pi} \cos\theta d\theta$$

- 2. The graph above shows the polar curve $r = 2\theta + \cos\theta$ for $0 \le \theta \le \pi$. What is the area of the region bounded by the curve and the *x*-axis?
 - (A) 3.069
- (B) 4.935
- (C) 9.870
- (D) 17.456
- (E) 34.912

- _ 3. A particle moves in the xy-plane so that its position at any time t is given by $x(t) = t^2$ and $y(t) = \sin(4t)$. What is the speed of the particle when t = 3?
 - (A) 2.909
- (B) 3.062 (C) 6.884
- (D) 9.016
- (E) 47.393

4.	At time $t \ge 0$, a particle moving in the xy-plane has velocity vector given by $\vec{v}(t) = \langle t^2, 5t \rangle$. What is
	the acceleration vector of the particle at time $t = 3$?

(A)
$$\left\langle 9, \frac{45}{2} \right\rangle$$
 (B) $\left\langle 6, 5 \right\rangle$ (C) $\left\langle 2, 0 \right\rangle$ (D) $\sqrt{306}$ (E) $\sqrt{61}$

(B)
$$\langle 6,5 \rangle$$

$$(C) \langle 2,0 \rangle$$

(D)
$$\sqrt{306}$$

(E)
$$\sqrt{61}$$

5. Which of the following gives the length of the path described by the parametric equations
$$x = \sin t^3$$
 and $y = e^{5t}$ from $t = 0$ to $t = \pi$?

(A)
$$\int_{0}^{\pi} \sqrt{\sin^2(t^3) + e^{10t}} dt$$

(B)
$$\int_{-\infty}^{\pi} \sqrt{\cos^2(t^3) + e^{10t}} dt$$

(A)
$$\int_{0}^{\pi} \sqrt{\sin^{2}(t^{3}) + e^{10t}} dt$$
 (B) $\int_{0}^{\pi} \sqrt{\cos^{2}(t^{3}) + e^{10t}} dt$ (C) $\int_{0}^{\pi} \sqrt{9t^{4}\cos^{2}(t^{3}) + 25e^{10t}} dt$

(D)
$$\int_{0}^{\pi} \sqrt{3t^2 \cos^2(t^3) + 5e^{10t}} dt$$
 (E) $\int_{0}^{\pi} \sqrt{\cos^2(3t^2) + e^{10t}} dt$

(E)
$$\int_{0}^{\pi} \sqrt{\cos^2(3t^2) + e^{10t}} dt$$

6. Which of the following expressions gives the total area enclosed by the polar curve $r = \sin^2 \theta$ shown in the figure?

(A)
$$\frac{1}{2} \int_{0}^{\pi} \sin^2 \theta \, d\theta$$

(B)
$$\int_{0}^{\pi} \sin^2 \theta \, d\theta$$

(A)
$$\frac{1}{2} \int_{0}^{\pi} \sin^{2}\theta d\theta$$
 (B) $\int_{0}^{\pi} \sin^{2}\theta d\theta$ (C) $\frac{1}{2} \int_{0}^{\pi} \sin^{4}\theta d\theta$

(D)
$$\int_{0}^{\pi} \sin^{4}\theta d\theta$$
 (E) $2\int_{0}^{\pi} \sin^{4}\theta d\theta$

(E)
$$2\int_{0}^{\pi} \sin^4\theta d\theta$$

7	7.	The position of a particle moving in the xy-plane is given by the parametric equations $x = t^3 - 3t^2$ and
		$y = 2t^3 - 3t^2 - 12t$. For what values of t is the particle at rest?

- (A) -1 only
- (B) 0 only
- (C) 2 only (D) -1 and 2 only (E) -1, 0, and 2

_____ 8. What is
$$\frac{dy}{dx}$$
 for $r = 6\cos 4\theta$?

(A)
$$-\frac{\cos 4\theta \cos \theta - \sin 4\theta \sin \theta}{\cos 4\theta \sin \theta + \sin 4\theta \cos \theta}$$
 (B) $\frac{\cos 4\theta \cos \theta - 4\sin 4\theta \sin \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$ (C) $-\frac{\cos 4\theta \cos \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$

(B)
$$\frac{\cos 4\theta \cos \theta - 4\sin 4\theta \sin \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$$

(C)
$$-\frac{\cos 4\theta \cos \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$$

(D)
$$-\frac{\cos 4\theta \cos \theta - 4\sin 4\theta \sin \theta}{\cos 4\theta \sin \theta}$$
 (E) $-\frac{\cos 4\theta \cos \theta - 4\sin 4\theta \sin \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$

(E)
$$-\frac{\cos 4\theta \cos \theta - 4\sin 4\theta \sin \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$$

_____9. If
$$x(t) = \cos(2t)$$
 and $y(t) = \sin(2t)$, which of the following is equal to $\frac{d^2y}{dx^2}$?

- (A) $2\csc^2(2t)$ (B) $-\csc^3(2t)$ (C) $\csc^3(2t)$ (D) $-2\csc^3(2t)$ (E) $-2\csc^2(2t)$

- 14. The graphs of the polar curves r=3 and $r=4-2\sin\theta$ are shown in the figure above. The curves intersect when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.
 - (a) Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 2\sin\theta$. Find the area of S.

(b) A particle moves along the polar curve $r = 4 - 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.

(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.