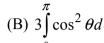
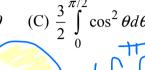
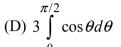
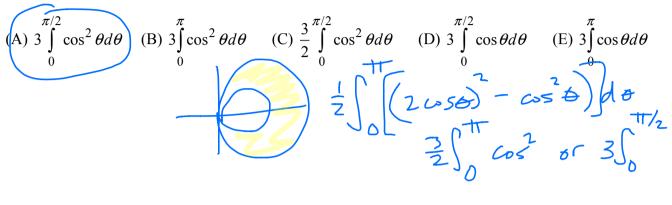
TEST BC CH 9.1-10.2

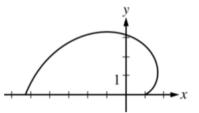

Calculator Permitted


I. Multiple Choice: Put the capital letter of the correct answer in the blank.



1. Which of the following is equal to the area of the region inside the polar curve $r = 2\cos\theta$ and outside the polar curve $r = \cos\theta$?





(E) 34.912

(E)
$$3\int_{0}^{\pi} \cos\theta d\theta$$

- 2. The graph above shows the polar curve $r = 2\theta + \cos\theta$ for $0 \le \theta \le \pi$. What is the area of the region bounded by the curve and the x-axis?

(A) 3.069 (B) 4.935 (C) 9.870 (D) 17.456

- 3. A particle moves in the xy-plane so that its position at any time t is given by $x(t) = t^2$ and $y(t) = \sin(4t)$. What is the speed of the particle when t = 3?

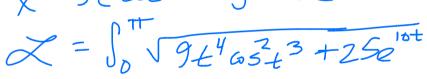
(A) 2.909 (B) 3.062 (C) 6.884 (D) 9.016 (E) 47.393

 $\chi'=2t$ y'=4cos4t $\chi'(3)=c$ y'(3)=4cos12Speed = $\sqrt{36+16(cos12)^2}$

At time $t \ge 0$, a particle moving in the xy-plane has velocity vector given by $\vec{v}(t) = \langle t^2, 5t \rangle$. What is the acceleration vector of the particle at time t = 3?

(A)
$$\left\langle 9, \frac{45}{2} \right\rangle$$
 (B) $\left\langle 6, 5 \right\rangle$ (C) $\left\langle 2, 0 \right\rangle$ (D) $\sqrt{306}$ (E) $\sqrt{61}$

$$\sqrt{1} \left(\frac{1}{4} \right) = \sqrt{2} \left($$


5. Which of the following gives the length of the path described by the parametric equations $x = \sin t^3$ and $v = e^{5t}$ from t = 0 to $t = \pi$?

(A)
$$\int_{0}^{\pi} \sqrt{\sin^2(t^3) + e^{10t}} dt$$

(B)
$$\int_{0}^{\pi} \sqrt{\cos^2(t^3) + e^{10t}} dt$$

(A)
$$\int_{0}^{\pi} \sqrt{\sin^{2}(t^{3}) + e^{10t}} dt$$
 (B) $\int_{0}^{\pi} \sqrt{\cos^{2}(t^{3}) + e^{10t}} dt$ (C) $\int_{0}^{\pi} \sqrt{9t^{4}\cos^{2}(t^{3}) + 25e^{10t}} dt$

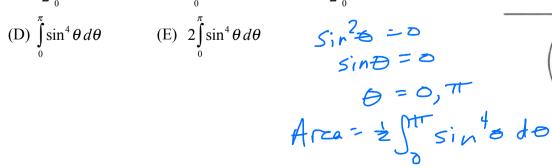
(D)
$$\int_{0}^{\pi} \sqrt{3t^{2} \cos^{2}(t^{3}) + 5e^{10t}} dt$$
 (E)
$$\int_{0}^{\pi} \sqrt{\cos^{2}(3t^{2}) + e^{10t}} dt$$
 Y = 5e

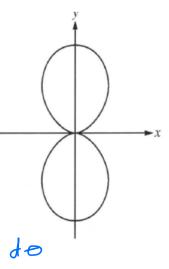
6. Which of the following expressions gives the total area enclosed by the polar curve $r = \sin^2 \theta$ shown in the figure?

(A)
$$\frac{1}{2}\int_{0}^{\pi}\sin^{2}\theta d\theta$$

(B)
$$\int_{0}^{\pi} \sin^2\theta \, d\theta$$

(A)
$$\frac{1}{2} \int_{0}^{\pi} \sin^{2}\theta \, d\theta$$
 (B) $\int_{0}^{\pi} \sin^{2}\theta \, d\theta$ (C) $\frac{1}{2} \int_{0}^{\pi} \sin^{4}\theta \, d\theta$


(D)
$$\int_{0}^{\pi} \sin^{4}\theta \, d\theta$$


(E)
$$2\int_{0}^{\pi} \sin^{4}\theta \, d\theta$$

$$Sin^{2} = 0$$

$$Sin = 0$$

$$A = 0, T$$

- 7. The position of a particle moving in the xy-plane is given by the parametric equations $x = t^3 3t^2$ and $y = 2t^3 - 3t^2 - 12t$. For what values of t is the particle at rest?
 - (A) -1 only (B) 0 only
- (D) -1 and 2 only

$$\chi' = 3t^2 - 6t = 0$$

 $3t(t-2)$
 $t=0, t=2$

(B) only (C) 2 only (D) =1 and 2 only (E) =1,0, and 2

$$y' = 6t^2 - 6t - 12 = 0$$

$$4 = 6t^2 - 6t - 12 = 0$$

$$6(t^2 - t - 2) = 0$$

$$(t - 2)(t + 1) = 0$$

$$t = 2$$

- 8. What is $\frac{dy}{dx}$ for $r = 6\cos 4\theta$?
 - (A) $-\frac{\cos 4\theta \cos \theta \sin 4\theta \sin \theta}{\cos 4\theta \sin \theta + \sin 4\theta \cos \theta}$ (B) $\frac{\cos 4\theta \cos \theta 4\sin 4\theta \sin \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$ (C) $-\frac{\cos 4\theta \cos \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$

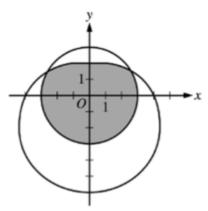
(D)
$$-\frac{\cos 4\theta \cos \theta - 4\sin 4\theta \sin \theta}{\cos 4\theta \sin \theta}$$
 (E) $-\frac{\cos 4\theta \cos \theta - 4\sin 4\theta \sin \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$

(E)
$$-\frac{\cos 4\theta \cos \theta - 4\sin 4\theta \sin \theta}{\cos 4\theta \sin \theta + 4\sin 4\theta \cos \theta}$$

$$y = 6605405in\theta$$
, $y' = -245in405in0 + 6605406050$
 $x = 6605406056$, $x' = -245in406050 - 6605405in0$

- 9. If $x(t) = \cos(2t)$ and $y(t) = \sin(2t)$, which of the following is equal to $\frac{d^2y}{dt^2}$?
 - (A) 2 csc(2+)
- (B) $\csc^{3}(2t)$ (C) $\csc^{3}(2t)$

$$y' = 2\cos(2t)$$
(D) $-2\csc^{3}(2t)$
(E) $-2\csc^{2}(2t)$


$$\chi' = -2\sin(2t)$$

$$\frac{dy}{dx} = -\cot(2t)$$

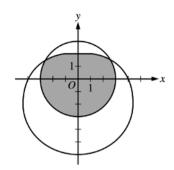
$$\frac{dy}{dx} = -\cot(2t)$$

$$\frac{d^2y}{dx^2} = \frac{2\csc^2(2t)}{-2\sin(2t)}$$

$$= \frac{csc^{2}(2t)}{sin(2t)} = -csc^{2}(2t)$$

(2013,BC-2)

- 14. The graphs of the polar curves r=3 and $r=4-2\sin\theta$ are shown in the figure above. The curves intersect when $\theta = \frac{\pi}{6}$ and $\theta = \frac{5\pi}{6}$.
 - (a) Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 2\sin\theta$. Find the area of S.


(b) A particle moves along the polar curve $r = 4 - 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.

(c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.

AP® CALCULUS BC 2013 SCORING GUIDELINES

Question 2

The graphs of the polar curves r=3 and $r=4-2\sin\theta$ are shown in the figure above. The curves intersect when $\theta=\frac{\pi}{6}$ and $\theta=\frac{5\pi}{6}$.

- (a) Let S be the shaded region that is inside the graph of r = 3 and also inside the graph of $r = 4 2\sin\theta$. Find the area of S.
- (b) A particle moves along the polar curve $r = 4 2\sin\theta$ so that at time t seconds, $\theta = t^2$. Find the time t in the interval $1 \le t \le 2$ for which the x-coordinate of the particle's position is -1.
- (c) For the particle described in part (b), find the position vector in terms of t. Find the velocity vector at time t = 1.5.

(a) Area =
$$6\pi + \frac{1}{2} \int_{\pi/6}^{5\pi/6} (4 - 2\sin\theta)^2 d\theta = 24.709 \text{ (or } 24.708)$$

$$2 \left[\frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (3^2) d\theta + \frac{1}{2} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (4 - 2\sin\theta)^2 d\theta \right]$$

(b) $x = r\cos\theta \Rightarrow x(\theta) = (4 - 2\sin\theta)\cos\theta$ $x(t) = (4 - 2\sin(t^2))\cos(t^2)$ x(t) = -1 when t = 1.428 (or 1.427) 3: $\begin{cases} 1: x(\theta) \text{ or } x(t) \\ 1: x(\theta) = -1 \text{ or } x(t) = -1 \\ 1: \text{ answer} \end{cases}$

- (c) $y = r \sin \theta \Rightarrow y(\theta) = (4 2\sin \theta) \sin \theta$ $y(t) = (4 - 2\sin(t^2)) \sin(t^2)$
 - Position vector = $\langle x(t), y(t) \rangle$ = $\langle (4 - 2\sin(t^2))\cos(t^2), (4 - 2\sin(t^2))\sin(t^2) \rangle$

$$v(1.5) = \langle x'(1.5), y'(1.5) \rangle$$

= $\langle -8.072, -1.673 \rangle$ (or $\langle -8.072, -1.672 \rangle$)

 $3: \begin{cases} 2: position vector \\ 1: velocity vector \end{cases}$