BC Calculus: TEST 8.1 – 8.6. NO CALCULATOR, NO CALCULATOR

Part I: Multiple Choice

- 1. What is the area of the region between the graphs of $y = x^2$ and y = -x from x = 0 to x = 2?
 - (A) 2/3
- (B) 8/3
- (C) 4
- (D) 14/3
- (E) 16/3

- 2. The region in the first quadrant between the x-axis and the graph of $y = 6x x^2$ is rotated around the y-axis. The volume of the resulting solid of revolution is given by
- (A) $\int_{0}^{6} \pi \left(6x x^{2}\right)^{2} dx$ (B) $\int_{0}^{6} 2\pi x \left(6x x^{2}\right) dx$ (C) $\int_{0}^{6} \pi x \left(6x x^{2}\right)^{2} dx$

 - (D) $\int_{0}^{6} \pi \left(3 + \sqrt{9 y}\right)^{2} dy$ (E) $\int_{0}^{9} \pi \left(3 + \sqrt{9 y}\right)^{2} dy$

- 3. The base of a solid is the region enclosed by the graph of $y = e^{-x}$, the coordinate axes, and the line x = 3. If all plane cross sections perpendicular to the x-axis are equilateral triangles, then its volume is
 - (A) $\frac{\sqrt{3}(1-e^{-6})}{\circ}$ (B) $\frac{\sqrt{3}}{\circ}e^{-6}$ (C) $\frac{\sqrt{3}}{4}e^{-6}$ (D) $\frac{\sqrt{3}}{4}e^{-3}$ (E) $\frac{\sqrt{3}}{4}(1-e^{-3})$

- 4. What is the length of the arc of $y = \frac{2}{3}x^{3/2}$ from x = 0 to x = 3?
- (B) 4
- (C) 14/3
- (D) 16/3
- (E) 7

$$\int_{x \to 0} 5. \lim_{x \to 0} \frac{e^{2x} - 1}{\tan x} =$$

- (A) -1
 - (B) 0
- (C) 1
- (D) 2
- (E) DNE

- $6. \lim_{h \to 0} \frac{\int_{1}^{1+h} \sqrt{x^5 + 8} dx}{h} =$
- (A) 0
- (B) 1
- (C) 3
- (D) $2\sqrt{2}$
- (E) DNE

$$\underbrace{ } 7. \lim_{x \to \infty} \left(1 + 5e^x \right)^{1/x} =$$

- (A) 0
- (B) 1
- (C) e
- (D) e^{5}
- (E) DNE

- $\frac{A}{1}$ 8. $\int_{-\infty}^{\infty} \frac{dx}{x^2} =$ (A) $\frac{1}{2}$ (B) $\ln 2$
- (C) 1
- (D) 2
- (E) DNE

II. Free Response: Show all work below the line.

- 10. Let f be the function given by $f(x) = kx^2 x^3$, where k is a positive constant. Let R be the region in the first quadrant bounded by the graph of f and the x-axis.
 - (a) Find all values of the constant k for which the area of R equals 2.
 - (b) For k > 0, write, but do not evaluate, an integral expression in terms of k for the volume of the solid generated when R is rotated about the x-axis.
 - (c) For k > 0, write, but do not evaluate, and expression in terms of k, involving one or more integrals that gives the perimeter of R.

AP® CALCULUS BC 2008 SCORING GUIDELINES (Form B)

Question 4

Let f be the function given by $f(x) = kx^2 - x^3$, where k is a positive constant. Let R be the region in the first quadrant bounded by the graph of f and the x-axis.

- (a) Find all values of the constant k for which the area of R equals 2.
- (b) For k > 0, write, but do not evaluate, an integral expression in terms of k for the volume of the solid generated when R is rotated about the x-axis.
- (c) For k > 0, write, but do not evaluate, an expression in terms of k, involving one or more integrals, that gives the perimeter of R.

(a) For
$$x \ge 0$$
, $f(x) = x^2 (k - x) \ge 0$ if $0 \le x \le k$

$$\int_0^k (kx^2 - x^3) dx = \left(\frac{k}{3}x^3 - \frac{1}{4}x^4\right)\Big|_{x=0}^{x=k} = \frac{k^4}{12}$$
4:
$$\begin{cases} 1 : \text{integral} \\ 1 : \text{antiderivative} \\ 1 : \text{value of integral} \\ 1 : \text{answer} \end{cases}$$

Area =
$$\frac{k^4}{12}$$
 = 2; $k = \sqrt[4]{24}$

(b) Volume =
$$\pi \int_{0}^{k} (kx^{2} - x^{3})^{2} dx$$

(c) Perimeter =
$$k + \int_0^k \sqrt{1 + (2kx - 3x^2)^2} dx$$

3:
$$\begin{cases} 1: \int_0^k \sqrt{1 + (f'(x))^2} dx \\ 1: \text{uses } f'(x) = 2kx - 3x^2 \text{ in integrand} \\ 1: \text{answer} \end{cases}$$