Name	Date	Period

BC Calculus: Practice TEST: 8.1 through 8.6

Part I: Multiple Choice

NO CALCULATOR ON THIS SECTION

1. The base of a solid S is the region enclosed by the graph of $y = \sqrt{\ln x}$, the line x = e, and the xaxis. If the cross sections of S perpendicular to the x-axis are squares, then the volume of S is

(A) $\frac{1}{2}$ (B) $\frac{2}{3}$ (C) 1 (D) 2 (E) $\frac{1}{3}(e^3 - 1)$

2. When the region enclosed by the graphs the graphs of y = x and $y = 4x - x^2$ is revolved about the y-axis, the volume of the solid generated is given by

(A) $\pi \int_{0}^{3} (x^{3} - 3x^{2}) dx$ (B) $\pi \int_{0}^{3} (x^{2} - (4x - x^{2})^{2}) dx$ (C) $\pi \int_{0}^{3} (3x - x^{2})^{2} dx$

(D) $2\pi \int_{0}^{3} (x^3 - 3x^2) dx$ (E) $2\pi \int_{0}^{3} (3x^2 - x^3) dx$

3. The base of a solid in the region in the first quadrant enclosed by the graph of $y = 2 - x^2$ and the coordinate axes. If every cross section of the solid perpendicular to the y-axis is a square, the volume of the solid is given by

(A) $\pi \int_{0}^{2} (2-y)^{2} dy$ (B) $\int_{0}^{2} (2-y) dy$ (C) $\pi \int_{0}^{\sqrt{2}} (2-x^{2})^{2} dx$

(D) $\int_{0}^{\sqrt{2}} (2-x^2)^2 dx$ (E) $\int_{0}^{\sqrt{2}} (2-x^2) dx$

4. Which of the following integrals gives the length of the graph of $y = \tan x$ between x = a and

x = b, where $0 < a < b < \frac{\pi}{2}$?

(A) $\int_{a}^{b} \sqrt{x^2 + \tan^2 x} dx$ (B) $\int_{a}^{b} \sqrt{x + \tan x} dx$ (C) $\int_{a}^{b} \sqrt{1 + \sec^2 x} dx$

(D) $\int_{a}^{b} \sqrt{1 + \tan^2 x} dx$ (E) $\int_{a}^{b} \sqrt{1 + \sec^4 x} dx$

5. A region in the plane is bounded by the graph of $y = \frac{1}{x}$, the x-axis, the line x = m, and the line x = 2m, m > 0. The area of this region

(A) is independent of *m*.

(B) increases as *m* increases.

(C) decreases as *m* increases.

- (D) decreases as m increases when $m < \frac{1}{2}$; increases as m increases when $m > \frac{1}{2}$.
- (E) increases as m increases when $m < \frac{1}{2}$; decreases as m increases when $m > \frac{1}{2}$.

6. The region in the first quad	rant bounded	by the graph	h of y = sec	$x, x = \frac{\pi}{4}, a$	and the axes is rotated
about the <i>x</i> -axis. What is the volume	of the solid g	generated?		7	
$(A) \frac{\pi^2}{4}$	(B) $\pi - 1$	(C) π	(D) 2π	$(E) \frac{8\pi}{3}$	
7. The region <i>R</i> in the first quant	adrant is encl	oses by the l	ines $x = 0$	and $y = 5$ a	nd the graph fo
$y = x^2 + 1$. The volume of the solid generated when R is revolved about the y-axis is					
(A) 6π (I	B) 8π (C)	$\frac{34\pi}{3}$ (I	D) 16π	(E) $\frac{544\pi}{15}$	
8. The length of the curve $y =$	$= x^3$ from $x =$	0 to x = 2	is given by		
(A) $\int_{0}^{2} \sqrt{1+x^{6}} dx$ (B) $\int_{0}^{2} \sqrt{1+3x^{2}} dx$	$(C) \pi \int_{0}^{2} v$	$\sqrt{1+9x^4}dx$	(D) $2\pi \int_{0}^{2}$	$\sqrt{1+9x^4}dx$	(E) $\int_{0}^{2} \sqrt{1 + 9x^4} dx$
9. The area of the region enclo	osed by the gr	raphs of $v =$	x^2 and $v =$: <i>x</i> is	
	(B) $\frac{1}{3}$				
6	3	2	6	(2) 1	
$\int_{0}^{x} e^{t^2} dt$					
$\int_{x \to 1}^{x} \frac{e^{t^2} dt}{x^2 - 1} = $ (A)) 0 (B)	1 (C	$\frac{e}{2}$	(D) <i>e</i>	(E) nonexistent
$11. \int_{0}^{\infty} x^{2} e^{-x^{3}} dx =$	(A) $-\frac{1}{3}$	(B) 0	(C) $\frac{1}{3}$	(D) 1	(E) divergent
$12. \lim_{x \to 1} \frac{\ln(x^2 + 4x - 4)}{5x^2 - 5} =$	(A) $\frac{8}{5}$	(B) $\frac{6}{5}$	(C) $\frac{3}{5}$	(D) $\frac{7}{10}$	(E) DNE
$13. \lim_{x \to 0} \frac{\sin^{-1}(3x)}{\tan^{-1}(4x)} =$	(A) $\frac{3}{4}$	(B) 0	(C) 4	(D) $\frac{4}{3}$	(E) DNE
14. $\lim_{x \to 0^+} x(5 - 6 \ln x) =$	(A) 0	(B) -6	(C) -1	(D) -	∞ (E) ∞
15. $\lim_{x \to 5} \left(\frac{7}{\ln(x-4)} - \frac{7}{x-5} \right) =$	(A	(B) 3	3.5 (C) 7	(D) -x	o (E) ∞
$16. \lim_{x \to 0} (1 + 6x)^{\csc x} =$	(A)	e^6 (B) e (C	E) 6 (D	$(E) \infty$

$$\int_{2}^{\infty} \frac{x}{\sqrt[3]{x^2 - 2}} dx =$$

(A)
$$2^{2/3}$$

(A)
$$2^{2/3}$$
 (B) $\frac{2^{2/3}}{4}$ (C) $\frac{3 \cdot 2^{2/3}}{4}$ (D) $-\frac{3 \cdot 2^{2/3}}{4}$ (E) Diverges

(C)
$$\frac{3 \cdot 2^{2/3}}{4}$$

(D)
$$-\frac{3\cdot 2^{2/3}}{4}$$

(E) Diverges

_____19.
$$\int_{-\infty}^{\infty} 4xe^{-5x^2} dx =$$

(A)
$$\frac{4}{5}$$

(B)
$$\frac{2}{5}$$

(C)
$$\frac{1}{5}$$

(C) 3

(A) $\frac{4}{5}$ (B) $\frac{2}{5}$ (C) $\frac{1}{5}$ (D) 0 (E) Diverges

_____ 20.
$$\int_{1}^{\infty} \frac{4 \arctan x}{1 + x^2} dx =$$

(A)
$$\frac{3}{8}$$

(B)
$$\frac{3\pi^2}{8}$$

(C)
$$\frac{\pi^2}{2}$$

(D)
$$\frac{3\pi^2}{4}$$

(A) $\frac{3}{8}$ (B) $\frac{3\pi^2}{8}$ (C) $\frac{\pi^2}{2}$ (D) $\frac{3\pi^2}{4}$ (E) Diverges

$$\underline{\qquad} 21. \int_{0}^{2} \frac{4}{(x-1)^{1/3}} dx =$$

(D)
$$0$$

(E) Diverges

22. (Calculator Permitted) Determine the smallest integer a so that $\int_{a}^{\infty} \frac{2}{x^2 + 1} dx \le \frac{1}{50}$.

(A) 130

(B) 110

(C) 120

(D) 90

(E) 100

Part II. Free Response

(CALCULATOR PERMITTED)

23. (2007-BC1) Let R be the region in the first and second quadrants bounded above by the graph of $y = \frac{20}{1 + r^2}$ and below by the horizontal line y = 2.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is rotated about the x-axis.
- (c) The region R is the base of a solid. For this solid, the cross sections perpendicular to the x-axis are semicircles. Find the volume of this sold.

24. (2003-BC1) Let R be the shaded region bounded by the graphs of $y = \sqrt{x}$ and $y = e^{-3x}$ and the vertical line x = 1.

- (a) Find the area of R.
- (b) Find the volume of the solid generated when R is revolved about the horizontal line y = 1.
- (c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is a rectangle whose height is 5 times the length of its base in region R. Find the volume of this solid.

25. (BC 2009B-1) A baker is creating a birthday cake. The base of the cake is the region R in the first quadrant under the graph of y = f(x) for $0 \le x \le 30$, where $f(x) = 20\sin\left(\frac{\pi x}{30}\right)$. Both x and y are measured in centimeters. The region R is shown in the figure. The derivative of f is $f'(x) = \frac{2\pi}{3}\cos\left(\frac{\pi x}{30}\right)$.

- (a) The region *R* is cut out of a 30-centimeter-by-20-centimeter rectangular sheet of cardboard, and the remaining cardboard is discarded. Find the area of the discarded cardboard.
- (b) The cake is a solid with base *R*. Cross sections of the cake perpendicular to the *x*-axis are semicircles. If the baker uses 0.05 grams of unsweetened chocolate for each cubic centimeter of cake, how many grams of unsweetened chocolate will be in the cake?
- (c) Find the perimeter of the base of the cake.