
AP Calculus: TEST: 5.1 – 6.2 Calculator permitted

Part I: Multiple Choice

- _ 1. A particle moves along the x-axis with velocity given by $v(t) = 3t^2 4$ for time $t \ge 0$. If the particle is at position x = -2 at time t = 0, what is the position of the particle at time t = 3?
 - (A) 13
- (B) 15
- (C) 16
- (D) 17
- (E) 25

- 2. The graph of a function f is shown at right. What is the value of $\int_{0}^{x} f(x) dx$?
 - (A) 6
- (B) 8
- (C) 10
- (D) 14
- (E) 18

Graph of f

3. Which of the following is the solution to the differential equation $\frac{dy}{dx} = e^{y+x}$ with the initial condition $y(0) = -\ln 4$?

$$(A) \ y = -x - \ln 4$$

(B)
$$y = x - \ln 4$$

(A)
$$y = -x - \ln 4$$
 (B) $y = x - \ln 4$ (C) $y = -\ln(-e^x + 5)$
(D) $y = -\ln(e^x + 3)$ (E) $y = \ln(e^x + 3)$

$$(D) y = -\ln(e^x + 3)$$

$$(E) y = \ln\left(e^x + 3\right)$$

4. For time $t \ge 0$, the position of a particle traveling along a line is given by a differentiable function s. If s is increasing for $0 \le t < 2$ and s is decreasing for t > 2, which of the following is the total distance the particle travels for $0 \le t \le 5$?

(A)
$$s(0) + \int_{0}^{2} s'(t)dt - \int_{2}^{5} s'(t)dt$$
 (B) $s(0) + \int_{2}^{5} s'(t)dt - \int_{0}^{2} s'(t)dt$ (C) $\int_{2}^{5} s'(t)dt - \int_{0}^{2} s'(t)dt$


(B)
$$s(0) + \int_{2}^{5} s'(t) dt - \int_{0}^{2} s'(t) dt$$

(C)
$$\int_{2}^{5} s'(t)dt - \int_{0}^{2} s'(t)dt$$

(D)
$$\left| \int_{0}^{5} s'(t) dt \right|$$
 (E) $\int_{0}^{5} \left| s'(t) \right| dt$

5.	If the initial tem tea changes at the	sperature of the tone rate $R(t) = -6$	ea, at time $6.89e^{-0.05}$	t = 0 minute $t = 0$ minute $t =$	inutes, is 2 s Fahrenhe	$00^{\circ}F$ an	d the temperat	ure of the
	(A) 175° F	(B) 130° F	(C	C) 95° F	(D) 7	$'0^{\circ}F$	(E) 45° F	
6.								(1)
		• •						
		(A) 720 (B) 7	725 (0	C) 732	(D) 744	(E) 750	6	
con	astant and t is meanue of k ?	the population P of a city grows according to the differential equation $\frac{dP}{dt} = kP$, where k is a set and t is measured in years. If the population of the city doubles every 12 years, what is the first t ? (A) 0.058 (B) 0.061 (C) 0.167 (D) 0.693 (E) 8.318 $\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
		t (hours)	4	7	12	15		
		25.00	6.5	6.2	5.9	5.6		
8.	R(t), where $R(t)$ are given	(t) is measured in the table above	n liters pe e. Using	er hour, ar a right Ri	t is meas	sured in h	ours. Selected ree subinterval	d values of s and data
	(A) 64.9	(B) 68.2	(C) 1	114.9	(D) 110	5.6	(E) 118.2	
9.	What is the area $x = 2$?	of the region in	the first o	juadrant b	ounded by	the grapl	$h of y = e^{x/2} a$	and the line
	(A) $2e-2$	(B) 2 <i>e</i>	(C)	$\frac{e}{2}$ -1	(D) $\frac{e}{}$	$\frac{-1}{2}$	(E) $e-1$	

10.

Shown above is a slope field for which of the following differential equations?

(A)
$$\frac{dy}{dx} = xy$$

(B)
$$\frac{dy}{dx} = xy - y$$

(C)
$$\frac{dy}{dx} = xy + y$$

(D)
$$\frac{dy}{dx} = xy + x$$

(A)
$$\frac{dy}{dx} = xy$$
 (B) $\frac{dy}{dx} = xy - y$ (C) $\frac{dy}{dx} = xy + y$ (D) $\frac{dy}{dx} = xy + x$ (E) $\frac{dy}{dx} = \left(x + 1\right)^3$

Part II: Free Response: Show all work below the problem in the space provided. Round to 3 decimals when applicable and include units when applicable, and wear galoshes when applicable.

t (minutes)	0	4	9	15	20
W(t) (degrees Fahrenheit)	55.0	57.1	61.8	67.9	71.0

- 11. The temperature of water in a tub at time t is modeled by a strictly increasing, twice-differentiable function W, where W(t) is measured in degrees Fahrenheit and t is measured in minutes. At time t = 0, the temperature of the water is $55^{\circ}F$. The water is heated for 30 minutes, beginning at time t = 0. Values of W(t) at selected times t for the first 20 minutes are given in the table above.
 - (a) Use the data in the table to estimate W'(12). Show the computation that lead to your answer. Using correct units, interpret the meaning of your answer in the context of this problem.

(b) Use the data in the table to evaluate $\int_{0}^{20} W'(t)dt$. Using correct units, interpret the meaning of $\int_{0}^{20} W'(t)dt$ in the context of this problem.

these 20 minutes? Explain your reasoning.

(c) For $0 \le t \le 20$, the average temperature of the water in the tub is $\frac{1}{20} \int_{0}^{20} W(t) dt$. Use a left Riemann sum with the four subintervals indicated by the data in the table to approximate $\frac{1}{20} \int_{0}^{20} W(t) dt$. Does this approximation overestimate or underestimate the average temperature of the water over

(d) For $20 \le t \le 25$, the function *W* that models the water temperature has first derivative given by $W'(t) = 0.4\sqrt{t}\cos(0.06t)$. Based on the model, what is the temperature of the water at time t = 25?