Name	Date	Period

Calculus TEST: 6.4 to 8.1. NO Calculator permitted

Part I: Multiple Choice: Put the correct CAPITAL letter (yes I was shouting) in the blank to the left of the question number.

- 1. If $\frac{dy}{dx} = y \sec^2 x$ and y = 5 when x = 0, then y = 0

 - (A) $e^{\tan x} + 4$ (B) $e^{\tan x} + 5$ (C) $5e^{\tan x}$
- (D) $\tan x + 5$ (E) $\tan x + 5e^x$
- 2. Bacteria in a certain culture increase at a rate proportional to the number present. If the number of bacteria doubles in three hours, in how many hours will the number of bacteria triple?

- (A) $\frac{3 \ln 3}{\ln 2}$ (B) $\frac{2 \ln 3}{\ln 2}$ (C) $\frac{\ln 3}{\ln 2}$ (D) $\ln \left(\frac{27}{2}\right)$ (E) $\ln \left(\frac{9}{2}\right)$
- _____ 3. If $\frac{dy}{dt} = ky$ and k is a nonzero constant, then y could be

- (A) $2e^{kty}$ (B) $2e^{kt}$ (C) $e^{kt} + 3$ (D) kty + 5 (E) $\frac{1}{2}ky^2 + \frac{1}{2}$

- 4. Shown at right is a slope field for which of the following differential equations?
- (A) $\frac{dy}{dx} = 1 + x$ (B) $\frac{dy}{dx} = x^2$ (C) $\frac{dy}{dx} = x + y$

 - (D) $\frac{dy}{dx} = \frac{x}{v}$ (E) $\frac{dy}{dx} = \ln y$

- (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{6}$ (D) $\frac{1}{2} \ln 2$ (E) $-\ln 2$
- _____ 6. $\int_{0}^{8} \frac{dx}{\sqrt{1+x}} =$ (A) 1 (B) $\frac{3}{2}$ (C) 2

- (E) 6
- 7. A kangaroo moves in a straigt line so that its velocity at time $t \ge 0$ on a horizontal line is $t t^2$. What is the *total* distance covered by the kangaroo between t = 0 and t = 2?
 - (A) 1
- (B) $\frac{4}{3}$ (C) $\frac{5}{3}$ (D) 2
- (E) 5

8. A particle moves along the x-axis with velocity given by $v(t) = 3t^2 + 6t$ for tim	e <i>t</i> ≥	0. I	f the			
particle is at position $x = 2$ at time $t = 0$, what is the position of the particle at t (A) 4 (B) 6 (C) 9 (D) 11 (E) 12	=1?					
9. The data for the acceleration $a(t)$ of a car from 0 to 6 seconds are given in the table at right. If the velocity at	0	2	4	6		
t = 0 is 11 feet per second, the approximate value of the velocity at $t = 6$, computed using a left-hand Riemann sum		2	8	3		
with three subintervals of equal length, is (A) 26 ft/sec (B) 30 ft/sec (C) 37 ft/sec (D) 39 ft/sec	(E)	41 f	t/sec			
10. Let $F(x)$ be an antiderivative of $\sin x \cos^2 x$. If $F\left(\frac{\pi}{2}\right) = 0$, then $F(0) =$						
(A) -1 (B) $-\frac{1}{3}$ (C) 0 (D) $\frac{1}{3}$ (E) 1						
11. What is the average value of $y = x^2 \sqrt{x^3 + 1}$ on the interval [0,2]?						
(A) $\frac{26}{9}$ (B) $\frac{52}{9}$ (C) $\frac{26}{3}$ (d) $\frac{52}{3}$ (E) 24						
12. $\int_{1}^{2} (x^7 + k) dx = 16$, then $k =$						

Part II: **Free Response**: Show all work below the problem in the space provided. Round to 3 decimals when applicable and include units when applicable, and wear galoshes when applicable.

- 13. (2005-BC4) Consider the differential equation $\frac{dy}{dx} = 2x y$
- (a) On the axes provided, sketch a slope field for the given differential equation at the twelve points indicated, and sketch the solution curve that passes through the point (0,1).

- (b) The solution curve that passes through the point (0,1) has a local minimum at $x = \ln\left(\frac{3}{2}\right)$. What is the *y*-coordinate of this local minimum?
- (c) Let y = f(x) be the particular solution to the given differential equation with the initial condition f(0) = 1. Use a tangent line approximation centered at x = 0 to approximate f(-0.4). Show the work that leads to your answer.
- (d) Find $\frac{d^2y}{dx^2}$ in terms of x and y. Determine whether the approximation found in part (c) is less than or greater than f(-0.4). Explain your reasoning.