Name_____ Date_____ Take Home TEST: 4.4 – 5.1 All integration techniques and Differential Equations NO CALCULATOR PERMITTED

Part I: Multiple Choice:

1. (no work needed) Shown at right is a slope field for which of the following differential equations? which of the following differential equations:

(A) $\frac{dy}{dx} = 1 + x$ (B) $\frac{dy}{dx} = x^2$ (C) $\frac{dy}{dx} = x + y$ (D) $\frac{dy}{dx} = \frac{x}{y}$

(A)
$$\frac{dy}{dx} = 1 + x$$

(B)
$$\frac{dy}{dx} = x^2$$

(C)
$$\frac{dy}{dx} = x + y$$

(D)
$$\frac{dy}{dx} = \frac{x}{y}$$

(E)
$$\frac{dy}{dx} = \ln y$$

2. (no work needed) Which of the following could be the slope field for the differential equation $\frac{dy}{dx} = y^2 - 1?$

(A)

(C)

(D)

(E)

Part II: Short Answer—Evaluate the following indefinite integrals. Simplify your coefficients! Don't forget +C. Do all work in the space provided below each problem.

3.
$$\int \frac{9}{\sqrt{25-4x^2}} dx =$$

$$4. \int \frac{9x}{\sqrt{25-4x}} dx =$$

5.
$$\int \frac{9x}{\sqrt{25-4x^2}} dx =$$

$$6. \int 5 \sec^2 x \cdot e^{\tan x} dx =$$

$$7. \int 2x^2 \left(2x^3 + 5\right)^4 dx =$$

$$8. \int \frac{4}{x\sqrt{(\ln x)^5}} dx =$$

$$9. \int 7x \csc(2x^2) dx =$$

10.
$$\int \frac{4}{x^2 - 14x + 49} dx =$$

$$11. \int \frac{x-7}{x^2 - 14x + 48} dx =$$

Read and Sign to acknowledge the following statement:

I completed this test on my own without any help from others. I am an honest and upright student with impeccable integrity who eschews academic dishonesty, chicanery, corruption, perfidiousness, double-dealing fraudulence, and cunning improbity. I also LOVE math!