AP Calculus TEST 4.1-5.1, No Calculator

Section 1: Multiple Choice—You know what to do

____1. $\int (x^2-2)^2 dx =$

$$(A)\left(\frac{x^3}{3} - 2x\right)^2 + C$$

$$(B) \frac{\left(x^2 - 2\right)^3}{6x} + C$$

(C)
$$\frac{x^5}{5} - \frac{4x^3}{3} + 4x + C$$

(D)
$$\frac{2x}{3}(x^2-2)^3+C$$

$$(E)\left(\frac{x^2-2}{3}\right)^3+C$$

_____ 2. At each point (x, y) on a curve, $\frac{d^2y}{dx^2} = 6x$. Additionally, the line y = 6x + 4 is tangent to the curve at

x = -2. Which of the following is an equation of the curve that satisfies these conditions?

(A)
$$y = 6x^2 - 32$$

(B)
$$y = x^3 - 6x - 12$$

(C)
$$y = 2x^3 - 3x$$

(D)
$$y = x^3 - 6x + 12$$

(E)
$$y = 2x^3 + 3x - 12$$

 $3. \int \frac{\sin 2x}{\cos x} dx =$

(A)
$$-2\cos x + C$$
 (B) $2\cos x + C$ (C) $-\cos 2x + C$ (D) $\cos x + C$ (E) $\cos 2x + C$

 $4. \int \tan^2 x dx =$

(A)
$$\tan x + x + C$$
 (B) $\sec x + x + C$ (C) $\sec x - x + C$ (D) $\tan x - x + C$ (E) $\tan x + C$

$$----5. \int \frac{2x^2}{\sqrt{x^3 + 3}} dx =$$

(A)
$$\frac{2}{3}\sqrt{x^3+3}+C$$
 (B) $\frac{4}{3\sqrt{x^2+3}}+C$ (C) $\frac{4}{3}\sqrt{x^3+3}+C$ (D) $\frac{1}{3}\sqrt{x^3+3}+C$ (E) $\frac{3}{4}\sqrt{x^3+3}+C$

$$\underline{\qquad} 6. \quad \int x\sqrt{x-1}dx =$$

(A)
$$\frac{2}{5}(x-1)^{5/2} + \frac{2}{3}(x-1)^{3/2} + C$$

(B)
$$\frac{1}{2}(x-1)^4 + C$$

(C)
$$\frac{5}{2}(x-1)^{5/2} + \frac{3}{2}(x-1)^{3/2} + C$$

(D)
$$\frac{1}{3}x^2(x-1)^{3/2} + C$$

(E)
$$\frac{2}{3}(x^2-x)^{3/2}+C$$

$$\underline{\qquad} 7. \int \tan^3 x \cdot \sec^2 x dx =$$

(A)
$$\frac{1}{2}\tan^2 x + C$$
 (B) $\frac{1}{4}\tan^4 x + C$ (C) $\frac{1}{2}\sec^2 x + C$ (D) $\frac{\sec^3 x \cdot \tan^4 x}{12} + C$ (E) $4\tan^4 x + C$

- 8. What is the average value of $\cos x$ on the closed interval $\left| 0, \frac{\pi}{2} \right|$?
- (A) $\frac{1}{2}$ (B) $\frac{\pi}{4}$ (C) $\frac{1}{2\pi}$ (D) $\frac{2}{\pi}$ (E) $\frac{\pi}{2}$

(A)
$$2x\left[\cos^2\left(x^2\right) - \cos^2\left(2x\right)\right]$$

(B)
$$\cos^2(x^2)$$

(C)
$$2x^2 \cos^2(x^2)$$

(D)
$$2 \left[x \cos^2(x^2) - \cos^2(2x) \right]$$

(E)
$$\cos^2(x^2) - \cos^2(2x)$$

Part II: Free Response—Do and show all work in the space provided. Have fun!

10.

At time t = 0, a boiled potato is take from a pot on a stove and left to cool in a kitchen. The internal temperature of the potato is 91 degrees Celsius (°C) at time t = 0, and the internal temperature of the potato is greater than $27^{\circ}C$ for all times t > 0. The internal temperature of the potato at time t minutes can be modeled by the function H that satisfies the differential equation $\frac{dH}{dt} = -\frac{1}{4}(H - 27)$, where H(t) is measured in degrees Celsius and H(0) = 91.

(a) Write an equation for the line tangent to the graph of H at t = 0. Use this equation to approximate the internal temperature of the potato at time t = 3.

(b) Use $\frac{d^2H}{dt^2}$ to determine whether your answer in part (a) is an underestimate or an overestimate of the internal temperature of the potato at time t = 3.

(c) For $t < 10$, an alternate model for the internal temperature of the potato at time t minutes is the function
G that satisfies the differential equation $\frac{dG}{dt} = -(G-27)^{2/3}$, where $G(t)$ is measured in degrees Celsius
and $G(0) = 91$. Find an expression for $G(t)$. Based on this model, what is the internal temperature of
the potato at time $t = 3$?