TEST: 4.1-4.3, Calculator Permitted

Part I: short answer: You know what to do (show all work and set-ups).

1. If
$$f'(x) = \frac{2}{x}$$
 and $f(\sqrt{e}) = 5$, then $f(e) =$

$$2. \int (x^3 + 1)^2 dx =$$

_____ 3. If
$$g(x) = x^2 - 3x + 4$$
 and $f(x) = g'(x)$, then $\int_{1}^{3} f(x) dx =$

_____4. If f is the function given by
$$f(x) = \int_{4}^{2x} \sqrt{t^2 - t} dt$$
, then $f'(2) =$

_____ 5. If
$$\int_{0}^{3} f(x)dx = 6$$
 and $\int_{3}^{5} f(x)dx = 4$, then $\int_{0}^{5} (3+2f(x))dx =$

6. A left Rieman sum, a right Riemann sum, and a trapezoidal sum are used to approximate the value of $\int f(x)dx$, each using the same number of subintervals. The graph of the function f is shown at right. Which of the sums give an underestimate of the value of $\int f(x)dx$?

I. Left Sum II. Right Sum III. Trapezoidal sum

(List all that apply, and show graphical evidence.)

- 7. The rate at which water is sprayed on a field of vegetables if given by $R(t) = 2\sqrt{1+5t^3}$, where t is in minutes and R(t) is in gallons per minute. During the time interval $0 \le t \le 4$, what is the average rate of water flow, in gallons per minute?
 - (A) 8.458
- (B) 13.395
- (C) 14.691
- (D) 18.916
- (E) 35.833

- 9. The graph fo the piecewise linear function f is shown in the figure at right. If $g(x) = \int_{-2}^{x} f(t)dt$, which of the following values is greatest?

 - (A) g(-3) (B) g(-2) (C) g(0) (D) g(1) (E) g(2)

- 10. The graph of the function f shown has horizontal tangents at x = 2 and x = 5. Let g be the funtion defined by $g(x) = \int_{0}^{x} f(t)dt$. For what values of xdoes the graph of g have a point of inflection?
 - (B) 4 only (C) 2 and 5 only (A) 2 only
 - (D) 2, 4, and 5 (E) 0, 4, and 6

<i>y</i>		
4	\wedge	
3+/		
2+/		
1-		
0	1 1 1 5	
	2 3 4 3	, x
-2-	Graph of f	

x	-4	-3	-2	-1
f(x)	0.75	-1.5	-2.25	-1.5
f'(x)	-3	-1.5	0	1.5

- 11. The table above gives values of a function f and its derivative at selected values of x. If f'is continuous on the interval [-4,-1], what is the value of $\int_{-1}^{-1} f'(x)dx$?
 - (A) -4.5
- (B) -2.25
- (C) 0
- (D) 2.25
- (E) 4.5

Part II: Free Response: Respond Freely, bearing in mind 3 things: Notation, Notation, and (there was one more . . .)

Graph of f

12. Let f be the function given by $f(x) = (\ln x)(\sin x)$. The figure above shows the graph of f for

 $0 < x \le 2f$. The function g is defined by $g(x) = \int_{1}^{x} f(t)dt$ for $0 < x \le 2f$.

- (a) Find g(1) and g'(1).
- (b) On what intervals, if any, is g increasing? Justify your answer.
- (c) For $0 < x \le 2f$, find the value of x at which g has an absolute minimum. Justify your answer.
- (d) For $0 < x \le 2f$, is there a value of x at which the graph of g is tangent to the x-axis? Explain why or why not.