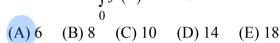
AP Calculus Test 4.1-4.3, No calculator

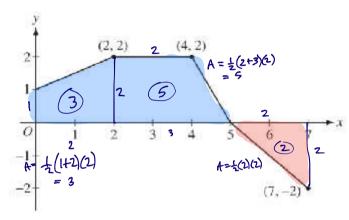
Multiple Choice

1. $\int \sec x \tan x dx = (A) \sec x + C$ (B) $\tan x + C$ (C) $\frac{\sec^2 x}{2} + C$ (D) $\frac{\tan^2 x}{2} + C$ (E) $\frac{\sec^2 x \tan^2 x}{2}$

- (C) 8

3. The graph of a function f is shown at right. What is the value of $\int_{0}^{1} f(x)dx? = 3 + 5 - 2 = 6$





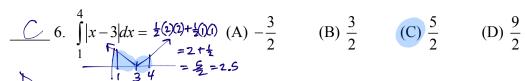
Graph of f

	_		<u>م</u> کے	<u> </u>
х	0	2	4	6
f(x)	4	k	8	12

4. The function f is continuous on the closed interval [0,6] and has the values given in the table above.

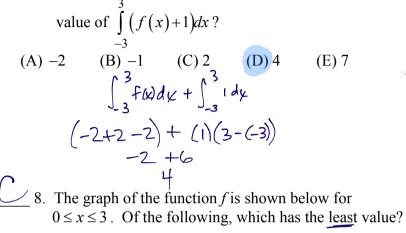
The trapezoidal approximation for $\int_{0}^{6} f(x)dx$ found with 3 subintervals of equal length is 52. What is the value of k?

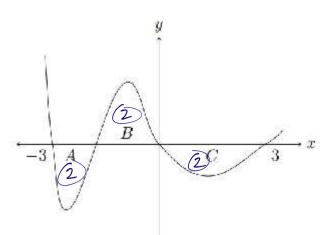
(A) 2 (B) 6 (C) 7 (D) 10 (E) 14 2k = 20 k = 10 $5. \int (x^{3} + 1)^{2} dx = (A) \frac{1}{7}x^{7} + x + C$ $(B) \frac{1}{7}x^{7} + \frac{1}{2}x^{4} + x + C$ $(C) 6x^{2}(x^{3} + 1) + C$ $(D) \frac{1}{3}(x^{3} + 1)^{3} + C$ $(E) \frac{(x^{3} + 1)^{3}}{9x^{2}} + C$

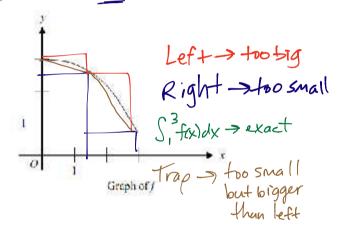


- (E)5

7. The regions A, B, and C in the figure at right are bounded by the graph of the function f and the xaxis. If the area of each region is 2, what is the







$$(A) \int_{1}^{3} f(x) dx$$

- (B) Left Riemann sum approximation of $\int f(x)dx$ with 4 subintervals of equal length
- (C) Right Riemann sum approximation of $\int f(x) dx$ with 4 subintervals of equal length
- (D) Midpoint Riemann sum approximation of $\int_{1}^{2} f(x) dx$ with 4 subintervals of equal length
- (E) Trapezoidal sum approximation of $\int f(x)dx$ with 4 subintervals of equal length

- 9. If $\int_{-5}^{2} f(x)dx = -17$ and $\int_{5}^{2} f(x)dx = -4$, what is the value of $\int_{-5}^{5} f(x)dx$?

 (A) -21 (B) -13 (C) 0 (D) 13 (E) 2

$$\int_{-5}^{2} f(x) dx + \int_{2}^{5} f(x) dx$$
-5
-17 + 4

 \bigcirc 10. Let f and g be continuous functions for $a \le x \le b$. If a < c < b, $\int_{a}^{b} f(x) dx = P$, $\int_{a}^{b} f(x) dx = Q$,

$$\int_{a}^{b} g(x) dx = R, \text{ and } \int_{c}^{b} g(x) dx = S, \text{ then } \int_{a}^{c} (f(x) - g(x)) dx =$$

(A)
$$P-Q+R-S$$

(B)
$$P-Q-R+S$$

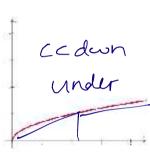
(C)
$$P - Q - R - S$$
 (D) $P + \int_{a}^{b} \int_{a}^$

$$-S \qquad \text{(E)} \ P + Q - R + S$$

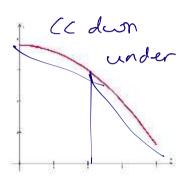
(A) P-Q+R-S (B) P-Q-R+S (C) P-Q-R-S (D) P+Q-R-S (E) P+Q-R+S $\int_{a}^{b} \frac{1}{2} dx + \int_{b}^{c} \frac{1}{2} dx + \int_{a}^{c} \frac{1}{2} dx + \int_{b}^{c} \frac{1}{2}$ 11. If a trapezoidal sum over-approximates $\int f(x)dx$, which of the following could be the graph of

$$y = f(x)?$$

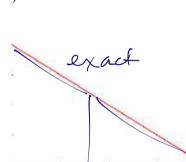
(B)

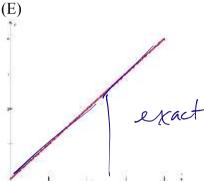


(C)



(D)





12. The function f is continuous on the closed interval [2,13] and has values as shown in the table below. Using the intervals [2,3], [3,5], [5,8], and [8,13], what is the approximation of $\int f(x)dx$ ob

otained from a left Rie	emann su	m?	(<u> </u>	$\frac{1}{2}$	3 ,) ————————————————————————————————————
	х	2	3	5	8	13
	f(x)	6	-2	-1	3	9

(A) 6

$$\int_{2}^{13} f(x) dx \approx L_{4} = |(6) + 2(-2) + 3(-1) + 5(3)$$

$$= 6 - 4 - 3 + 15$$

$$= 14$$

13. If
$$f(x) = g(x) + 7$$
 for $3 \le x \le 5$, then $\int_{3}^{5} [f(x) + g(x)] dx = \int_{3}^{5} (g(x) + 7 + g(x)) dx = 2 \int_{3}^{5} g(x) dx + \int_{3}^{5} 7 dx dx dx + \int_{3}^{5} 7 dx dx dx + \int_{3}^{5} 7 dx dx dx + \int_{3$

14. The function f is continuous on the closed interval [2,14] and has values as show in the table below. Using three subintervals indicated by the data, what is the approximation of $\int f(x)dx$ found by

using a right Riemann sur

(A)296

ım?		-	3_	5_	4	14
	х	2	5	10	14	$\int_{2}^{14} f(x) dx \approx R = 3(28) + 5(34) + 4(36)$ $\int_{2}^{4} f(x) dx \approx R = 3(28) + 5(34) + 4(36)$
	f(x)	12	28	34	30	= 204 + 170
((B) 312		(C) 34	3	(D)	374 (E) 390 = 374

15. The most general antiderivative of
$$f(x) = (\sec x) \left(\frac{\cot x}{\sin x}\right)$$
 is $\int (\sec x) \left(\frac{\cot x}{\sin x}\right) dx = \int (-\csc x) dx = \int (-\csc x) dx = \int (-\csc x) dx = \int (-\cot x) d$

(A)
$$\sec x \tan x + C$$

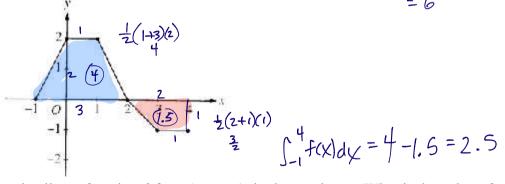
(B)
$$-\csc x \cot x + C$$

$$(C) - \cot x + C$$

(D)
$$\cos x + C$$

16. If
$$\int_{-1}^{3} f(x)dx = 2$$
 and $\int_{2}^{3} f(x)dx = -1$, find $\int_{-1}^{2} [2f(x)]dx = 2 \int_{-1}^{2} f(x)dx = 2 \left[\int_{-1}^{3} f(x)dx + \int_{3}^{2} f(x)dx \right]$

(A) 2 (B) -3 (C) 3 (D) -6 (E) 6 = 2 [2+1] = -2(3)



$$\int_{-1}^{4} f(x) dx = 4 - 1.6 = 2.5$$

17. The graph of a piecewise-linear function f, for $-1 \le x \le 4$, is shown above. What is the value of

$$\int_{1}^{4} f(x)dx?$$

18. If f is continuous for all x, which of the following integrals necessarily have the same value?

I. $\int_{a}^{b} f(x) dx$ II. $\int_{a}^{b} f(x+a) dx$ III. $\int_{a+c}^{b} f(x+c) dx$ Wang directions

(A) I and II only (B) I and III only (C) II and III only (D) I, II, and III (E) None

I.
$$\int_{a}^{b} f(x)dx$$
 comparision

II.
$$\int_{a-a=0}^{\sqrt{b-a}} f(x+a)dx$$
left a

III.
$$\int f(x+c)dx$$
 Wrong directions

Short Answer: Evaluate the following indefinite integrals. Remember, rewriting is the key, and don't forget your +C.

Evaluate 4 of 6 of the following integrals (or get them all correct for amazing bonus points).

12.
$$\int e \csc x \tan^2 x dx$$

$$= \int \frac{1}{\sin x} \frac{\sin x}{\cos x} \frac{\sin x}{\cos x} dx$$

$$= \int \frac{1}{\cos x} \frac{\sin x}{\sin x} dx$$

13.
$$\int \frac{2}{5 \cdot 7^{-x}} dx$$

$$\frac{2}{5} \int \frac{1}{7} dx$$

$$\frac{2}{5} \cdot \frac{1}{\ln 7} \cdot \frac{1}{7} + C$$
vorrection

14.
$$\int \left(\frac{4x + 3\sqrt[3]{x} - x^{2}}{2x}\right) dx$$

$$\int \left(\frac{4x}{2x} + \frac{3x}{2x} - \frac{x^{2}}{2x}\right) dx$$

$$\int \left(2 + \frac{3}{2}x^{-\frac{1}{2}} - \frac{1}{2}x\right) dx$$

$$2x + \frac{9}{2}x^{\frac{1}{2}} - \frac{1}{4}x^{2} + C$$

15.
$$\int 2\sqrt{x} (3x-2)^{2} dx$$

$$\int \left(2x^{\frac{1}{2}} \left(9x^{\frac{2}{2}} - 12x + 4\right)\right) dx$$

$$\int \left[18x^{\frac{4}{2}} - 24x^{\frac{4}{2}} + 8x^{\frac{4}{2}}\right] dx$$

$$\frac{36}{2} x^{\frac{4}{2}} - \frac{48}{5}x^{\frac{4}{2}} + \frac{16}{3}x^{\frac{4}{2}} + C$$

16.
$$\int \left(\frac{4}{\pi x} - \frac{2}{\sin^2 x}\right) dx$$
$$\int \left[\frac{4}{\pi} \left(\frac{1}{x}\right) - 2 \csc^2 x\right] dx$$
$$\frac{4}{\pi} \ln |x| + 2 \cot x + C$$

17.
$$\int \left(\frac{e^{-x} - 1}{e^{-x}}\right) dx$$
$$\int \left(\frac{e^{-x}}{e^{-x}} - \frac{1}{e^{-x}}\right) dx$$
$$\int \left(1 - e^{x}\right) dy$$
$$x - e^{x} + C$$