(E) \$2.75

TEST: AP Calculus: Test—3.6-4.2. CALCULATOR PERMITTED

(D) \$3.00

PART I: Multiple Choice. Put the Capital Letter of the correct answer choice in the space to the left of each problem number.

1. Freudian Pizza Parlor sells a soda for \$1.40 and a slice of Freudian pizza for \$2.50. In any given week, they sell 500 sodas and 1,000 slices of pizza. The proprietors of the parlor determine that for every dime they increase the price of a pizza slice, they will sell 10 fewer sodas and 20 fewer slices. At what price should they sell their pizza slice if they wish to maximize their revenue?

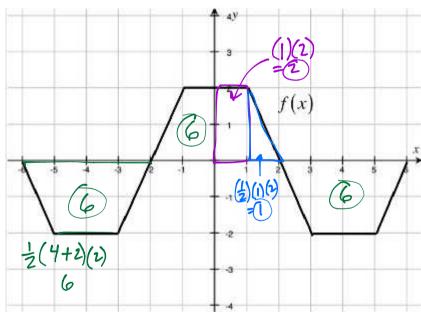
(A) \$4.80 (B) \$3.60 (C) \$3.40 Let n=#of Dime increases to pizza price

R= (1.40)(500-10n) + (2.50 + 0.10n)(1000-20n) R=700-14n+2500-50n+100n-2n2



R(n) R(n) = -4n + 36 = 0 n = 9* So they should raise the price of a pizza slice

9 dimes, or 90t, from to FO \$2.50/slice to \$3.40/slice



2. The graph of f(x) is shown above. Which of the following must be true?

I.
$$\int_{-6}^{-2} f(x)dx = \int_{2}^{6} f(x)dx - 6 = -6$$
II.
$$\int_{-2}^{2} f(x)dx = \int_{6}^{2} f(x)dx - 6 = 6$$
III.
$$\int_{0}^{1} f(x)dx = \int_{-2}^{-6} f(x)dx + \int_{1}^{2} f(x)dx - 2 = 6 + 1$$

$$\int_{0}^{2} f(x)dx = \int_{-2}^{-6} f(x)dx + \int_{1}^{2} f(x)dx - 2 = 6 + 1$$

$$\int_{0}^{2} f(x)dx = \int_{-2}^{6} f(x)dx + \int_{1}^{2} f(x)dx - 2 = 6 + 1$$

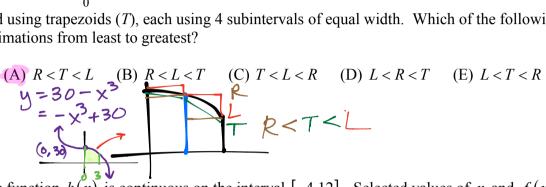
$$\int_{0}^{2} f(x)dx = \int_{-2}^{6} f(x)dx + \int_{1}^{2} f(x)dx - 2 = 6 + 1$$

(A) I only (B) II only (C) III only (D) I and II only (E) I, II, and III

3. If
$$\int_{-1}^{5} g(x) dx = 11$$
 and $\int_{5}^{1} g(x) dx = -8$, what is $\int_{-1}^{1} g(x) dx$?

(A) -6 (B) 19 (C) -19 (D) 3 (E) -19

4. Estimations for $\int_{-\infty}^{3} (30-x^3) dx$ are calculated using a left Riemann sum (L), a right Riemann sum (R), and using trapezoids (T), each using 4 subintervals of equal width. Which of the following lists the estimations from least to greatest?



 $f(x) = \frac{1}{2}$ 5. The function $f(x) = \frac{1}{2}$ is continuous on the interval [-4,12]. Selected values of x and f(x) are given in the table below. If $\int_{1}^{12} f(x) dx$ is estimated using a right Riemann sum with 4 equal subintervals, a left Riemann sum with 4 equal subintervals, trapezoids with 4 equal subintervals, and a midpoint Riemann sum with 2 equal subintervals, what is the difference between the larges and smallest

estimation?									
	_	<u>† </u>	<u> </u>	1 - 4					
х	-4	0	4	8	12				
f(x)	3	9	-2	-6	-3				

(A) 68 (B) 32 (C) 24 (D) 16 (E) 8

$$R_4 = 4[9-2-6-3] = -8$$
 $24-(-8) = 32$
 $L_4 = 4[3+9-2-6] = 1/6$
 $T_4 = \frac{1}{2}(4)[3+2(9)+2(-2)+2(-6)-3] = 4$
 $M_2 = 8[9-6] = 24$

[h = 3 inch]

 \bigcirc 6. A trapezoid is pictured above. It has a base, a, that is a constant 10 inches while its top base, b, is increasing at a rate of 3 inches per minute while its height, h, is decreasing at a rate of $\frac{1}{2}$ inches per minute. When the top base is 4 inches and the height is 3 inches, how fast, in square inches per minute, is the area of the trapezoid changing?

when $\frac{dA}{dE} = \frac{1}{2} \left[(3)(3) + (10 + 4)(-\frac{1}{2}) \right]$ = $\frac{1}{2} \left[(3)(3) + (10 + 4)(-\frac{1}{2}) \right]$

a = 10 inch

is the area of the trapezoid changing?

(A) 8
(B) 2
(C) 1
(D)
$$-\frac{3}{4}$$
(E) $-\frac{5}{2} \stackrel{A}{=} \frac{1}{2} \left(\frac{10+5}{10+5} \right) \stackrel{A}{=} \frac{1}{2$

7. Kool-Aid is draining from a conical tank whose base angle is 60° as shown in the figure at the right. When the height of the Kool-Aid is 3 feet, its height is decreasing at 6 inches per hour. At this moment, how fast, in cubic feet per hour, is the volume of the Kool-Aid decreasing?

$$\frac{162\pi}{162\pi}, \quad (B) \quad 18\pi \quad (C) \quad \frac{13\pi}{2}$$

$$\frac{dh}{dt} = -6 \text{ in/hr}$$

$$\frac{dh}{dt} = -\frac{1}{2} + \frac{1}{2} + \frac{$$

$$=?$$

$$=\frac{2}{30}$$

$$=\frac{2}{3}(3^{2})(-\frac{1}{2})$$

$$8. \int \frac{\pi}{x^e} dx =$$

(A)
$$\frac{\pi x^{1-e}}{1-e} + C$$
 (B) $\frac{\pi}{(e+1)x^{e+1}} + C$ (C) $\frac{\pi}{x^{e+1}} + C$ (D) $\pi x^{1-e} + C$ (D) $\frac{\pi x^{e+1}}{e+1} + C$

(B)
$$\frac{\pi}{(e+1)x^{e+1}} + 0$$

(C)
$$\frac{\pi}{x^{e+1}} + C$$

(D)
$$\pi x^{1-e} + C$$

(D)
$$\frac{\pi x^{e+1}}{e+1} + C$$

$$\pi \int_{X}^{-e} dx \qquad 1-e$$

$$\pi \left[\frac{X}{X} \right] = \frac{\pi \cdot X}{1-e}$$

9. Use a tangent line approximation for $g(x) = \sqrt{x}$ at x = 64 to estimate $\sqrt{65} - \sqrt{63}$.

(B)
$$\frac{1}{4}$$
 (B) $\frac{1}{8}$ (C) $\frac{1}{16}$ $g(64) = 8, p+1$ $g' = \frac{1}{2} \times \sqrt{2} = \frac{1}{2}$

$$\begin{array}{l}
8 & 16 \\
9(64) = 8, p + (64, 8) \\
9' = \frac{1}{2} \times \sqrt{2} = \frac{1}{2} \sqrt{x} \\
9'(64) = \frac{1}{16} = m \\
\cancel{L}(x) = 8 + \frac{1}{16} (x - 64)
\end{array}$$

(A)
$$\frac{\left(\sqrt{x}-1\right)^3}{3\sqrt{x}} + C$$
 (B) $\frac{\left(\sqrt{x}-1\right)^3}{3} + C$ (C) $\frac{2}{3}x^{3/2} + 2x^{1/2} + C$

(B)
$$\frac{\left(\sqrt{x}-1\right)^3}{3}+C$$

(C)
$$\frac{2}{3}x^{3/2} + 2x^{1/2} + C$$

(D)
$$\frac{1}{2}x^{1/2} - \frac{4}{3}x + 3$$

(D)
$$\frac{1}{2}x^{1/2} - \frac{4}{3}x + x^{1/2} + C$$
 (E) $\frac{2}{3}x^{3/2} - 2x + 2x^{1/2} + C$

$$\int \left(\frac{X-2IX+1}{\sqrt{X}}\right) dx$$

$$\int \left(\frac{y}{\chi^{y_2}} - \frac{2\sqrt{y}}{\sqrt{\chi}} + \frac{1}{\chi^{y_2}} \right) d\chi$$

$$\int \left(\frac{X-2\sqrt{X}+1}{\sqrt{X}}\right) dx = \int \left(\frac{X^{2}-2+X^{2}}{\sqrt{X}}\right) dx$$

$$= \int \left(\frac{X}{\sqrt{Y^{2}}} - \frac{2\sqrt{X}}{\sqrt{X}} + \frac{1}{\sqrt{Y^{2}}}\right) dx$$

$$= \int \left(\frac{X}{\sqrt{Y^{2}}} - \frac{2\sqrt{X}}{\sqrt{X}} + \frac{1}{\sqrt{Y^{2}}}\right) dx$$

PART II: Free Response—Use Proper Notation

11. I was out collecting data yesterday and used it to approximate a **differentiable** function y = f(x)represented in the table below

,	w.		- 	1 3	3,3	7	- I	_
	х	0	4	8	11	14	15	16
	у	30	6	1	2	0	-1	0

... use my data to **approximate** $\int f(x)dx$ using the following methods using the given number of subintervals,

n. (simplify your answers):

(a) Left end-point Riemann Sums (n = 6).

(a) Left end-point Riemann Sums
$$(n = 6)$$
.
 $T \approx L_6 = 4(30) + 4(6) + 3(1) + 3(2) + 1(6) + 1(-1)$

$$= 152 \sqrt{2}$$

(b) Right end-point Riemann Sums (n = 6)

$$T \approx R_6 = 4(6) + 4(1) + 3(2) + 3(0) + 1(-1) + 1(0)$$

$$= 33 \sqrt{4}$$

(c) Midpoint Riemann Sums (n = 3)

$$\pm \approx M_3 = 8(6) + 6(2) + 2(-1)\sqrt{5}$$

= 58 (6)

(d) Trapezoidal Rule
$$(n = 6)$$

$$\pm \approx \frac{L_6 + R_4}{2} = \frac{/52 + 33}{2} = 92.5$$

$$\pm \approx \pm \left[4(30+6)+4(6+1)+3(1+2)+3(2+6)+1(0+-1)+1(-1+6)\right] = 92.5$$

(e) Can any of the above calculations represent the approximate area under the function y = f(x) on [0,16]? Why or why not?

(f) **Approximate** f'(12) from the table of values. Make sure to show your difference quotient.

$$f'_{(12)} \approx \frac{0-2}{14-11} = \frac{-2}{3} \qquad \sqrt{9}$$
or $\frac{2-0}{11-14}$

- (g) If the <u>secant</u> line on the interval [11,14] was used to approximate f(12), given that f'(x) < 0 and f''(x) < 0 for all $x \in (11,14)$, would this approximation of f(12) be an over or under approximation?
 - Explain why.. This would be an UNDERapproximation since the secont line is BELOW the curve of F(x) on (11,14)