TEST: AP Calculus: Test—3.6-4.2. No Calculator

PART I: Multiple Choice. Put the Capital Letter of the correct answer choice in the space to the left of each problem number.

$$\underline{\qquad} 1. \quad \int \frac{x+1}{x^2} dx =$$

(A)
$$\ln x^2 + \ln |x| + C$$
 (B) $-\ln x^2 + \ln |x| + C$ (C) $x^{-1} + \ln |x| + C$

(B)
$$-\ln x^2 + \ln |x| + C$$

(C)
$$x^{-1} + \ln|x| + C$$

(D)
$$-x^{-1} + \ln|x| + C$$

(D)
$$-x^{-1} + \ln|x| + C$$
 (E) $-2x^3 + \ln|x| + C$

$$2. \int (x^3 + 1)^2 dx =$$

(A)
$$\frac{1}{7}x^7 + x + C$$

(A)
$$\frac{1}{7}x^7 + x + C$$
 (B) $\frac{1}{7}x^7 + \frac{1}{2}x^4 + x + C$ (C) $6x^2(x^3 + 1) + C$

(C)
$$6x^2(x^3+1)+C$$

(D)
$$\frac{1}{3}(x^3+1)^3+C$$
 (E) $\frac{(x^3+1)^3}{9x^2}+C$

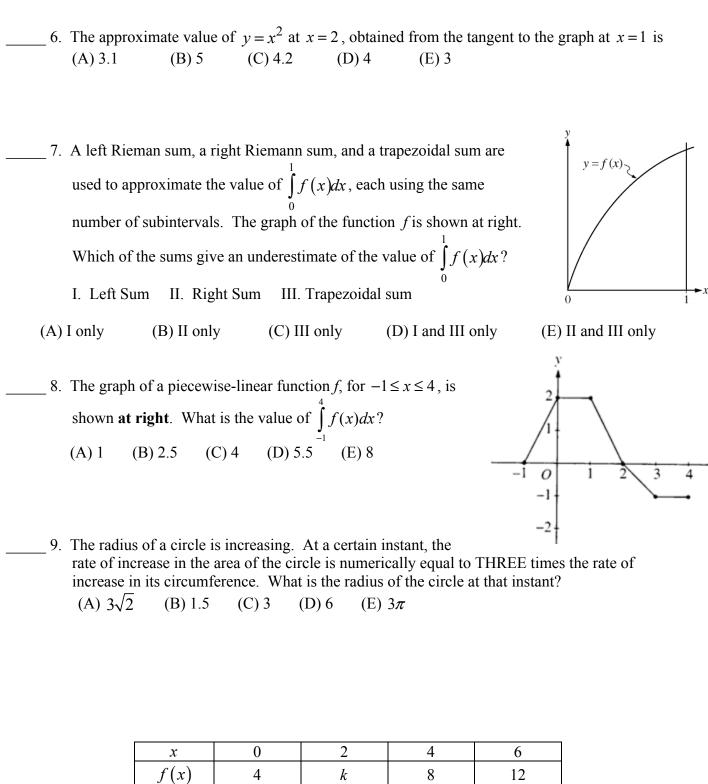
3. The most general antiderivative of $f(x) = \frac{\cos x}{1 - \cos^2 x}$ is

(A) $\csc x + C$ (B) $-\csc x + C$ (C) $\cot x + C$ (D) $-\cot x + C$ (E) $\csc x \cot x + C$

(A)
$$\csc x + C$$

(B)
$$-\csc x + C$$

(C)
$$\cot x + C$$


(D)
$$-\cot x + C$$

4. Given 4 feet of fencing, what is the maximum number of square feet that can be enclosed if the fencing is used to make three sides of a rectangular pen, using an existing wall as the fourth

- side? (A) $\frac{32}{9}$ (B) 1 (C) $\frac{16}{9}$ (D) 2 (E) 4

5. If $\int_{0}^{5} f(x)dx = -3$ and $\int_{-2}^{5} f(x)dx = 6$, find $\int_{-2}^{0} 3f(x)dx$ (A) 27 (B) 9 (C) -27

- (E) 18

X	0	2	4	6
f(x)	4	k	8	12

- 10. The function f is continuous on the closed interval [0,6] and has the values given in the table above. The trapezoidal approximation for $\int f(x)dx$ found with 3 subintervals of equal length is 52. What is the value of k?
 - (A) 2
- (B)6
- (C)7
- (D) 10
- (E) 14

PART II: Free Response.

Show all work in the space provided below the line.

11. I was out collecting data yesterday and tried to use it to approximate a **differentiable** function y = f(x) represented in the table below.

х	0	2	3	6	8	9	10
y	1	0	2	3	-1	4	5

... for parts (a) through (c) use my data to **approximate** $\int_{0}^{9} f(x)dx$ using 5 subintervals as indicated by the

data using the following methods. (use correct notation, simplify your answers, and indicate your method):

<u>method</u>):	
(a) Left end-point Riemann Sums ($n = 5$).	
(b) Right end-point Riemann Sums $(n = 5)$	
(c) Trapezoidal Rule ($n = 5$)	

(d) Can any of the above calculations represent the approximate area under the function $y = f(x)$
on[0,9]? Why or why not? Be specific.
(e) Approximate $f'(5)$ from the table of values. Simplify your answer. Show the work that leads to your
answer.
(f) If the <u>secant</u> line on the interval [6,8] was used to approximate $f(7)$, given that $f'(x) < 0$ and
$f''(x) > 0$ for all $x \in (6,8)$, would this approximation of $f(7)$ be an over or under approximation?
Explain why.