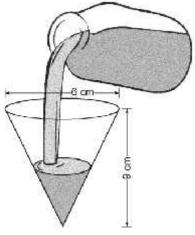
AP Calculus TEST 3.6-4.1, No Calculator

Section I: Multiple Choice—put the CAPITAL letter of the correct answer choice to the left of each question number.

1. A conical-shaped paper cup is shown in the diagram below.



If water cranberry juice is poured into the cup at a rate of 1 cubic centimeter per second, how fast is the depth of the cranberry juice in the cup increasing when the juice is 4 cm deep?

- (A) $\frac{16f}{9}$ cm/sec (B) $\frac{9}{64f}$ cm/sec (C) $\frac{9}{16f}$ cm/sec (D) $\frac{64f}{9}$ cm/sec (E) $\frac{16}{9f}$ cm/sec

- 2. Let f be a differentiable function such that f(3) = 2 and f'(3) = 5. If the tangent line at x = 3 is used to find an approximation to a zero of f, that approximation is
 - (A) 0.4
- (B) 0.5
- (C) 2.6
- (D) 3.4
- (E) 5.5

$$3. \int \frac{3x^5 + 2x^3 - x^2}{x^2} dx =$$

(A)
$$18x^6 + 8x^2 - 2x + 6$$

(B)
$$\frac{3}{4}x^4 + x^2 - x + 6$$

(A)
$$18x^6 + 8x^2 - 2x + C$$
 (B) $\frac{3}{4}x^4 + x^2 - x + C$ (C) $\frac{15x^4 + 6x^2 - 2x}{2x} + C$

(D)
$$\frac{x^6 + x^4 - x^3}{6x^3} + C$$
 (E) $3x^4 + 2x^2 - x + C$

(E)
$$3x^4 + 2x^2 - x + C$$

_____4. At each point (x, y) on a curve, $\frac{d^2y}{dx^2} = 6x$. Additionally, the line y = 6x + 4 is tangent to the curve at x = -2. Which of the following Is an equation fo the curve that satisfies these conditions?

(A)
$$y = 6x^2 - 32$$

(A)
$$y = 6x^2 - 32$$
 (B) $y = 2x^3 + 3x - 12$ (C) $y = 2x^3 - 3x$ (D) $y = x^3 - 6x - 12$ (E) $y = x^3 - 6x + 12$

(C)
$$y = 2x^3 - 3x$$

(D)
$$y = x^3 - 6x - 12$$

(E)
$$y = x^3 - 6x + 12$$

$$\underline{\qquad} 5. \int \frac{\sin 2x}{\cos x} dx =$$

(A)
$$\cos x + C$$

(B)
$$-2\cos x + C$$
 (C) $-\cos 2x + C$ (D) $2\cos x + C$ (E) $\cos 2x + C$

$$(C) -\cos 2x + C$$

(D)
$$2\cos x + C$$

(E)
$$\cos 2x + C$$

6. The sum of two positive integers is 90. If the product of one integer and the square of the other is a maximum, the the larger integer is

- (A) 75
- (B) 50
- (C) 30
- (D) 60
- (E) 80

_____ 7.
$$\int (x^2-2)^2 dx =$$

(A)
$$\frac{x^5}{5} - \frac{4x^3}{3} + 4x + C$$
 (B) $\frac{\left(x^2 - 2\right)^3}{6x} + C$ (C) $\left(\frac{x^3}{3} - 2x\right)^2 + C$ (D) $\frac{2x}{3}\left(x^2 - 2\right)^3 + C$ (E) $\frac{x^5}{5} + 4x + C$

8. Which of the following defines a function f such that $f'(x) = \sqrt{x}$ with the initial condition f(9) = 0?

(A)
$$f(x) = \frac{2}{3}x\sqrt{x} - 18$$
 (B) $f(x) = \frac{x\sqrt{x}}{3} + 9$ (C) $f(x) = x\sqrt{x} - 3x$ (D) $f(x) = \frac{1}{2}\sqrt{x} - 3$ (E) $f(x) = \frac{3}{2}x\sqrt{x} - 18$

- 9. The radius of a spherical ball Is decreasing at a constant rate of 3 centimeters per second. Find, In cubic centimeters per second, the rate of change of the volume of the ball when the radius is 5 cm.
 - (A) -60f
- (B) -150f
- (C) -300f
- (D) -100f
- (E) -12f

- 10. Let $\frac{d^2y}{dx^2} = -3x^2 4$ for some particular function y = f(x).

 (a) If y'(1) = 5 and $y(1) = -\frac{1}{4}$, find the particular solution y = f(x). Show the work that leads to your answer with correct notation.

(b) Write an equation for the tangent line to the particular solution y = f(x) at x = 1.

(c) Use your equation from part (b) to approximate $\overline{f(1.2)}$. Simplify your answer.

(d) Is your approximation from part (c) and over- or an under-approximation? Justify.