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AP Calculus TEST: 3.1 to 4.1, No Calculator
I. Multiple Choice: Put the correct CAPITAL letter in the blank to the left of the question number.

G 1. Let f be a differentiable function such that f(3)=2 and f"(3) = 5. If the tangent line at x =3 is
used to find an approximation to a zero of /. That approximation is which of the following?
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centimeters per second, the rate of change of the volume of the ball when the radius is 5 cm.
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@ 2. The radius of a spherical ball is decreasing at a constant rate of 3 cm per second. Find, in cubic
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C 4. A street light is hung 18 feet above street level. A 6-foot tall man standing directly under the light
walks away at a rate of 3 ft/sec. How fast is the tip of the man’s shadow moving?
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D 5. The graph of f (x) = 8x° —5x* will have how many points of inflection?
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6. The sum of two positive integers is 90. [¥ the product of one integer and the square of the other is a
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! 2 8. Which of the given functions does NOT satisfy the conditions of the Mean Value Theorem on the
interval xE[—2,2} ?
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II. Free Response: Show all work in the space provided using correct notation. Include units on all final
answers.
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10. As shown in the figure above, Kool-Aid is draining from a conical tank with height 15 feet and diameter 10
feet into a cylindrical tank that has a base with area 900z square feet. The depth, /4, in feet, of the Kool-

dh
Aid in the conical tank is changing at the rate of o h—12 feet per minute.

(a) Write an expression for the volume of Kool-Aid in the conical tank as a function of 4.
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(b) At what rate is the volume of Kool-Aid in the conical tank changing when s =3? Indicate units of
problem.

measure. Write a sentence, with units, explaining what your answer means in the context of the
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(c) Let y be the depth, in feet, of the Kool-Aid in the cylindrical tank. At what rate is y changing when
h =37 Indicate units of measure.
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