
AR Calculus AB/BC, TEST: 5.1 to 5.8

(A) 0 and a only

(B) 0 and m only

(C) i and b only

(D) 0, a, and b

(E) i, b, and k

2. Determine of the function $f(x) = x\sqrt{6-x}$ satisfies the hypothesis of the MVT on the interval [0,6], and if it does, find all numbers c satisfying the conclusion of that theorem.

(A) c = 5

(C) c = 3

(D) c = 2, 3

(E) c = 4, 5

(F) hypothesis not satisfied

3. Let f be the function given by $f(x) = 2xe^x$. The graph of f is concave down when

(A) x > -2 (B) x < -1 (C) x > -1 (D) x < 0

4. The function f is twice differentiable with f(2)=1, f'(2)=4, and f''(2)=3. What is the value of the approximation of f(1.9) using the line tangent to the graph of f at x = 2?

(B) 1.3

(C) 0.7

(D) 0.6

(E) 0.4

5. A baseball diamond is a square with side 90 feet. If a batter hits the ball and runs towards first base with a speed of 25 ft/sec, at what speed is his distance from second base decreasing when he is two thirds of the way to first base?

(A) $2\sqrt{10}$ ft/sec

(B) $3\sqrt{5}$ ft/sec (C) $\frac{5}{2}\sqrt{10}$ ft/sec (D) $\frac{3}{2}\sqrt{10}$ ft/sec (E) $4\sqrt{5}$ ft/sec

6. Find the values of x at which the graph of $y = x^2 - 4\cos x$ changes concavity on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

(A) $x = \frac{\pi}{3}$ (B) $x = -\frac{\pi}{3}$ (C) $x = -\frac{\pi}{3}$, $\frac{\pi}{3}$ (D) $x = -\frac{\pi}{6}$, $\frac{\pi}{6}$

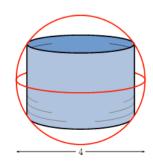
(E) $x = \frac{\pi}{6}$ (F) $x = -\frac{\pi}{6}$ (G) there are no values of x

7. Let f be the function with derivative given by $f'(x) = 2x^2 - 15x + 25$. How many local extrema does f have on the interval 2 < x < 4?

(A) Five

(B) Four

(C) Three


(D) Two

(E) One

8. A right circular cylinder is inscribed in a sphere with **diameter** 4cm as shown. If the cylinder is open at both ends, find the largest possible surface area of the

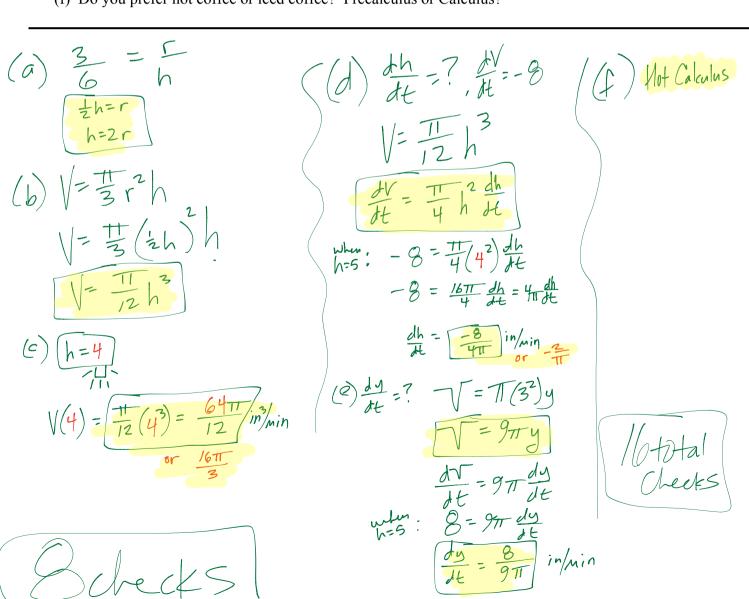
(A) $A = 8\pi \text{ cm}^2$ (B) $A = 8 \text{ cm}^2$ (C) $A = 16 \text{ cm}^2$

(D) $A = 16\pi \text{ cm}^2$ (E) $A = 2 \text{ cm}^2$

- Part II: Free Response. Do all work below the line. Label each part. Notation, Notation, Notation. Include units in ALL of your final answers.
- 9. Coffee is draining from a conical filter into a cylindrical coffeepot at the rate of 8 in³ / min. The dimensions of the filter and coffeepot are indicated in the diagram at right.

 Note: 6" = 6 inches.
 - (a) Using similar triangles, find an equation relating the height,
 h, of the coffee in the cone in terms of the radius, r, of the coffee in the cone.
 - (b) Write a simplified equation for the volume, V, of the coffee in the cone in terms of the height, h, of coffee in the cone. (get rid of the r variable!)
 - (c) How much coffee, in cubic inches, is in the cone when the coffee in the cone is 4 inches deep?
 - (d) How fast is the level, **h**, in the cone falling when the coffee in the cone is 4 inches deep?
 - (e) How fast is the depth level, y, in the pot rising when the coffee in the cone is 4 inches deep?

How fast


How fast

level rising?

is this

is this level falling?

(f) Do you prefer hot coffee or iced coffee? Precalculus or Calculus?

