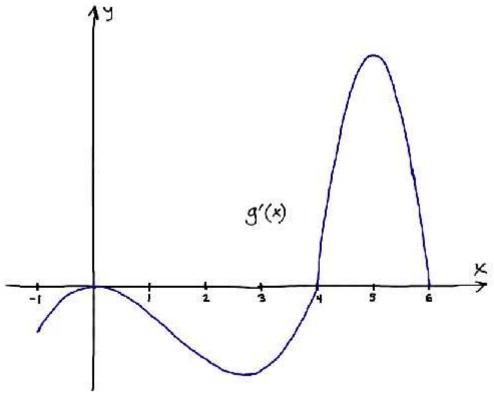
AB Calculus Test: 3.1-3.5 No Calculator

Part I: Multiple Choice



Use the graph above for questions 1-4. Let g be a function that is differentiable on the interval $\begin{bmatrix} -1,6 \end{bmatrix}$. The graph of the continuous function g', the derivative of g, is given above.

- 1. At what value of x can the absolute minimum of g occur?
 - (A) -1
- (B) 3
- (C)4
- (D) 5
- (E)6
- ____ 2. How many local extrema does the graph of g have on the interval $\begin{bmatrix} -1,6 \end{bmatrix}$?
 - (A) 0
- (B) 1
- (C) 2

- _____ 3. How many inflection values does the graph of g have on the interval $\begin{bmatrix} -1,6 \end{bmatrix}$?
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- ____ 4. How many values of x satisfy the Mean Value Theorem for the function g'(x) on the interval -1,6 ?
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E)4
- _____ 5. If f(x) is a differentiable function such that f(11) = 19 and $f'(x) \le 2$ for all x, what is the smallest possible value of f(-1)?
 - (A) 43
- (B) -5 (C) 9
- (D) -29
- (E) 17

6. Use the EVT to find the range of the function $f(x) = \frac{4}{x} + 2x^2$ on the interval $\frac{1}{2} \le x \le \frac{3}{2}$.

(A)
$$6 \le f(x) \le \frac{43}{6}$$

(B)
$$6 \le f(x) \le \frac{17}{2}$$

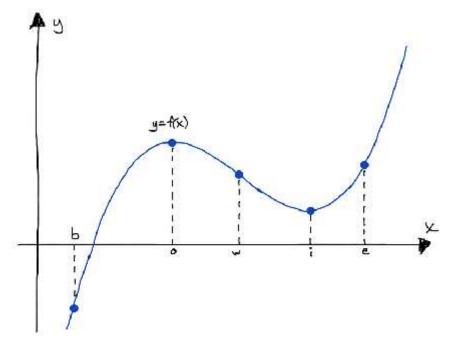
(A)
$$6 \le f(x) \le \frac{43}{6}$$
 (B) $6 \le f(x) \le \frac{17}{2}$ (C) $\frac{5}{2} \le f(x) \le \frac{21}{2}$ (D) $6 \le f(x) \le \frac{21}{2}$ (E) $\frac{5}{2} \le f(x) \le \frac{43}{6}$

(D)
$$6 \le f(x) \le \frac{21}{2}$$

(E)
$$\frac{5}{2} \le f(x) \le \frac{43}{6}$$

_ 7. If $f'(x) = \left[x(x+5)^4(3x-1)^{-3/5}\right]^3$ for some continuous function f, then f has which of the following?

- I. Local maximum at x = 0
- II. Local maximum at $x = -\frac{1}{3}$
- III. Local minimum at x = -5
- (A) I only
- (B) II only
- (C) III only
- (D) I and II only
- (E) I, II, and III



8. The function f is shown above with marked locations, b, o, w, i, and e. Of the following, which has the smallest value?

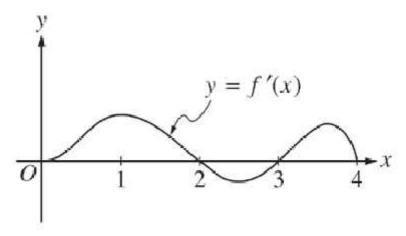
(A)
$$f'(b)$$
 (B) $f''(o)$ (C) $f''(w)$ (D) $f'(i)$ (E) $f''(e)$

(B)
$$f''(o)$$

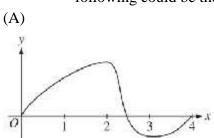
(C)
$$f''(w)$$

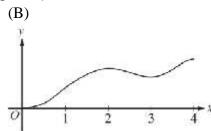
(D)
$$f'(i)$$

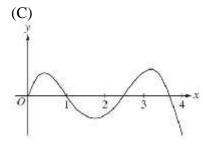
(E)
$$f''(e)$$

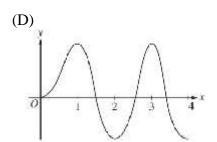


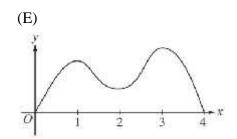
_____9. The figure above shows the graph of f', the derivative of the function f. If f(0) = 0, which of the following could be the graph of f?











_____ 10. Selected information is given below about a continuous function f(x) that is continuous for all real numbers.

	x < 0	x = 0	0 < x < 2	<i>x</i> = 2
f(x)	negative	0	positive	4
f'(x)	positive	DNE	negative	0
f''(x)	negative	DNE	negative	-3

Which of the following must be true about the function f(x)

- I. f(x) has a local maximum of 4
- II. f(x) has a local maximum at 0
- III. f(x) has an inflection value at 2
 - (A) I only (B) II only (C) II and III only (D) I and II only (E) I, II, and III

Part II: AB Free Response:

Suppose f is a function given by $f(x) = -x^{1/3} - x^{2/3}$,

(a) Show that $f'(x) = \frac{1 + 2x^{1/3}}{-3x^{2/3}}$.

(b) Determine the *x*-coordinates of any local extrema of f(x)? Justify your answer using the 1st Derivative Test.

(c) Determine the intervals on which f(x) is concave up.