AB Calculus Test: 3.1-3.5 No Calculator

Part I: Multiple Choice

Use the graph above for questions 1-4. Let g be a function that is differentiable on the interval $\begin{bmatrix} -1,6 \end{bmatrix}$. The graph of the continuous function g', the derivative of g, is given above.

1. At what value of x can the absolute minimum of g occur?

- (B) 3
- (C) 4
- (D) 5
- (E)6

2. How many local extrema does the graph of g have on the interval $\begin{bmatrix} -1,6 \end{bmatrix}$?

- (B) 1 (C) 2

3. How many inflection values does the graph of g have on the interval [-1,6]?

- (A) 0
- (B) 1
- (C) 2
- (D) 3

(E)4

4. How many values of x satisfy the Mean Value Theorem for the function g'(x) on the interval

- (Blue lines on graph)
 (A) 0 (B) 1 (C) 2 (D) 3

5. If f(x) is a differentiable function such that f(11) = 19 and $f'(x) \le 2$ for all x, what is the smallest possible value of f(-1)?

- by (A) 43 (B) -5 (C) 9 (D) -29 (E) 17 $\bigwedge VT$, $f(x) = \frac{f(n) f(-i)}{|1 (-1)|} \le Z \left\langle \frac{|9 f(-i)|}{|2|} \le Z \right\rangle \frac{|9 f(-i)|}{|2|} \le Z \left\langle \frac{|9 f(-i)|}{|2|} \le Z \right\rangle$

6. Use the EVT to find the range of the function $f(x) = \frac{4}{x} + 2x^2$ on the interval $\frac{1}{2} \le x \le \frac{3}{2}$.

A 7. If $f'(x) = \left[x(x+5)^4(3x-1)^{-3/5}\right]^3$ for some continuous function f, then f has which of the following? f'=0 $A+X=0,-5,\frac{1}{3}\rightarrow c.v.s$ I. Local maximum at x=0

- II. Local maximum at $x = -\frac{1}{2}$
- III. Local minimum at x = -5
- (A) I only (B) II only (C) III only (D) I and II only (E) I, II, and III

8. The function f is shown above with marked locations, b, o, w, i, and e. Of the following, which has the smallest value?

(A)
$$f'(b)$$
 (B) $f''(o)$ (C) $f''(w)$ (D) $f'(i)$ (E) $f''(e)$
 $f''(e)$

9. The figure above shows the graph of f', the derivative of the function f. If f(0) = 0, which of the following could be the graph of f?

_ 10. Selected information is given below about a continuous function f(x) that is continuous for all real numbers.

	<i>x</i> < 0	x = 0	0 < <i>x</i> < 2	x=2
f(x)	negative	0	positive	4
f'(x)	positive	DNE	negative	0
f''(x)	negative	DNE	negative	-3

Which of the following must be true about the function f(x)I. f(x) has a local maximum of 4, f''(z) = -3 < 0III. f(x) has an inflection value at 2

No. f(x) has an inflection value at 2

(A) I only (B) II only (C) II and III only (D) I and II only (E) I, II, and III

Part II: AB Free Response:

Suppose f is a function given by $f(x) = -x^{1/3} - x^{2/3}$.

(a) Show that
$$f'(x) = \frac{1 + 2x^{1/3}}{-3x^{2/3}}$$
.

$$f(x) = -x^{-3}x^{2/3}$$

$$f(x) = -\frac{1}{3}x^{-2/3} - \frac{1}{3}x^{-1/3}$$

$$f(x) = -\frac{1}{3}x^{-2/3} \left[1 + 2x^{1/3}\right]$$

$$f(x) = \frac{1 + 2x^{1/3}}{-3x^{2/3}} \sqrt{2}$$

(b) Determine the x-coordinates of any local extrema of f(x)? Justify your answer using the 1st Derivative Test.

$$f'(x) = DNE$$
 $f(x) = 0$
when when $-3x^{2/3} = 0$ $1+2x^{1/3} = 0$
 $x = -\frac{1}{8}$

f(x) = DNE f(x) = 0
when when
$$\frac{1}{3} = 0$$
 $\frac{1+2}{3} = 0$ $\frac{1+2}{3} = 0$

(c) Determine the intervals on which f(x) is concave up.

$$f'(x) = -\frac{1}{3}x^{7} - \frac{3}{3}x^{7}$$

$$f''(x) = \frac{2}{9}x^{-\frac{5}{3}} + \frac{2}{9}x^{-\frac{4}{3}}$$

$$f''(x) = \frac{2(1+x^{\frac{7}{3}})}{9x^{\frac{5}{3}}}$$

$$f''(x) = \frac{2(1+3x)}{9(3x)^{5}}$$

(c) Determine the intervals on which
$$f(x)$$
 is concave up.

$$f'(x) = -\frac{1}{3} \times \frac{-7/3}{3} - \frac{2}{3} \times \frac{7/3}{3}$$

$$f''(x) = \frac{2}{9} \times \frac{-5/3}{3} + \frac{2}{9} \times \frac{-7/3}{3}$$

$$f''(x) = \frac{2(1+x^{3})}{9 \times \frac{5/3}{3}}$$

$$f''(x) = \frac{2(1+3) \times 1}{9(3) \times 15}$$

$$f''(x) = \frac{2(1+3) \times 1}{9(3) \times 15}$$

XBM check can also be earned using the Quotient Rule.

$$f'_{10} = \frac{1+2x^{1/3}}{-3x^{2/3}}$$
 $f''' = \frac{(-3x^{2/3})^{2/3} - (1+2x^{2/3})^{2} - 2x^{2/3}}{9x^{1/3}}$