AB Calculus Test: 3.1-3.5 No Calculator

Part I: Multiple Choice—Put the CAPITAL letter in the space to the left of each question number.

Use the graph above for questions 1-4. Let k be a function that is differentiable on the interval [-1,6]. The graph of the continuous function k'(x), the derivative of k, is given above. The graph of k'(x) has x-intercepts at x=0, x=2, x=3, and x=6.

- _____1. At what value of x can the absolute maximum of k occur?
 - (A) -1
- (B) 3
- (C)4
- (D) 5
- (E) 6
- _____2. How many local extrema does the graph of k have on the interval $\begin{bmatrix} -1,6 \end{bmatrix}$?
 - (A) 0
- (B) 1
- (C) 2
- 3
- ____ 3. How many inflection values does the graph of k have on the interval $\begin{bmatrix} -1,6 \end{bmatrix}$?
 - (A) 0
- (B) 1
- (C) 2
- (D) 3 (E) 4
- 4. How many values of x satisfy the Mean Value Theorem for the function k'(x) on the interval $\lceil -1,6 \rceil$?
 - (A) 0
- (B) 1
- (C) 2
- (D) 3
- (E)4
- 5. If f(x) is a differentiable function such that f(10) = 29 and $f'(x) \le 3$ for all x, what is the smallest possible value of f(-1)?
 - (A) 62
- (B) 33
- (C) 3
- (D) -4
- (E) -33

(A)
$$y \in [-8,12]$$

(B)
$$y \in [-8,3]$$

(C)
$$y \in [3,12]$$

(A)
$$y \in [-8,12]$$
 (B) $y \in [-8,3]$ (C) $y \in [3,12]$ (D) $y \in [-8,19]$ (E) $y \in [3,19]$

E)
$$y \in [3,19]$$

7. If $M'(x) = x^2(x-4)^3(2x+1)^{-4/3}$ for some continuous function M, then M has which of the following?

I. Local minimum at x = 0

II. Local maximum at $x = -\frac{1}{2}$

III. Local minimum at x = 4

(B) II only

(C) III only

(D) I and II only

(E) I, II, and III

8. The function f is shown above with dots corresponding to the marked locations, C, A, M, P, B, E, and L. Of the following, which has the LARGEST value?

(A)
$$f'(C)$$

(B)
$$f''(B)$$

(A)
$$f'(C)$$
 (B) $f''(B)$ (C) $f'(M)$ (D) $f''(L)$ (E) $f(A)$

(D)
$$f''(L)$$

(E)
$$f(A)$$

9. The figure above shows the graph of f', the derivative of the function f. If f(0) = 0, which of the following could be the graph of f?

10. Selected information is given below about a continuous function f(x) that is continuous for all real numbers.

	x < -2	x = -2	-2 < x < 1	x = 1
f(x)	positive	3	negative	0
f'(x)	positive	0	negative	-4
f''(x)	positive	42	negative	0

Which of the following must be true about the function f(x)

- I. f(x) has a local minimum of 3
- II. f(x) has a local maximum at -2
- III. f(x) has an inflection value at 1
 - $(A)\ I\ only \quad (B)\ II\ only \quad (C)\ II\ and\ III\ only \quad (D)\ I\ and\ II\ only \quad (E)\ I,\ II,\ and\ III$

Suppose f is a function given by $f(x) = 6x^{2/3} - 3x^{4/3}$,

(a) Show that $f'(x) = \frac{4(1-\sqrt[3]{x^2})}{\sqrt[3]{x}}$.

(b) Determine the *x*-coordinates of any local max/ local mins of f(x)? Justify your answer using the 1st Derivative Test.

(c) Determine the intervals on which f(x) is concave down. Justify.