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TEST: 3.1-3.4, NO CALCULATOR

Part I: Multiple Choice—Put the CAPITAL letter of the correct answer in the space to the left of the
question number.

A 1. Find the local minimum value or the local maximum value of y = x> - 6x% + 9x +1.
(A) local max of 5 (B) local max of 1  (C) local max of 3 (D) local min of 5 (E) local min of -3
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[ ) 3. Find the absolute minimum value or the absolute maximum value of f (x) = -3x +4on the
interval (—1,2].
(A) max of 7 (B) max of -2 (C) min of 7 (D) min of -2 (E) neither exist
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D 4. The f be a function such that it is continuous on [a,b], it is differentiable on (a,b), and

f (a) =f (b), then there exists a number ¢ in (a,b) such that f ’(O) = (0. This theorem is known
as:

(A) Extreme Value Theorem (B) Intermediate Value Theorem (C) Mean Value Theorem
(D) Rolle’s Theorem (E) Fundamental Theorem of Calculus



fg 5. How many critical values of the function f* defined by f (x) = are there?
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D 6. Let /" (x) = x(x - 3)2 (x + 5) , the second-derivative of a continuous function f (x) , on what
open interval is the graph of f (x) concave down?

(A)(=%,=-5)U(=3,¢) (B) (=,-5)U(0,0) (C)(0,3) (D) (-5,0) (E) (-,-5)
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C 7. The figure above shows the graph of 1", the derivative of the function f on the closed interval

-3=<x<3. If /' has 3 zeros on -3 < x <3, how many relative/local extrema does f have on
3<x<3? MOX sr mg
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X / (x) /'(x) /" (x)
3 5 8 8
2 3 12 0
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A 8. The table above gives select values for a twice-differentiable function f (x) . Which of the
following must be true regarding f (x) ?

(A) f(x) has alocal maximum at x =1. 7E‘l( O = D

(B) f(x) has alocal minimum at x =1
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E 9. Find the value that satisfies the conclusion of the Mean Value Theorem for derivatives for the
function f(x) =3x% =5x+1 on the interval [2,5}.
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Part II: Free Response—Show all work with correct notation in the space provided.

10. Consider a differentiable function f(x) having domain of all positive real numbers, and for which it is
known that f'(x)=(6- x)x'2 fo

(@If f ( 5) =2, write an equation of the tangent line to f (x) at x=5.
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(b) Find the x-coordinate of the critical point of f (x) . Determine whether the point is a relative

maximum, a relative minimum, or neither for the function f (x) . Justify your answer.
| _ lo
/g / X> = L > X s 7
>< 7z

| P
_ \ — O
L0 ;PMG 4 ><> 7 amex

= @
X% :OO @ x £ has Zfia/ max ot X=6, @i{ L

but x=o Dhl j eV 016—9 SinCe- jC @Wvgzi from PDS%”Q"J

(c) Find all intervals on which the graph of f (x) is concave down. Justify your answer. 12
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