TEST: 3.1-3.4. NO CALCULATOR

Part I: Multiple Choice: Put the letter in the letter place. Be sure it's write, wright, rite, . . . correct.

_____1. The function f given by $f(x) = 2x^3 - 3x^2 - 12x$ has a local minimum at x =

$$(A)$$
 -1

(D)
$$\frac{3-\sqrt{105}}{4}$$

(A) -1 (B) 0 (C) 2 (D)
$$\frac{3-\sqrt{105}}{4}$$
 (E) $\frac{3+\sqrt{105}}{4}$

2. Let f be the function given by $f(x) = x^3 - 6x^2$. The graph of f is concave up when

(A)
$$x > 2$$

(B)
$$x < 2$$

(C)
$$0 < x < 4$$

(D)
$$x < 0$$
 or $x > 4$ only

(E)
$$x > 6$$
 only

_____ 3. If $f'(x) = (x-2)(x-3)^2(x-4)^3$, then f has which of the following relative extrema?

- I. A relative maximum at x = 2
- II. A relative minimum at x = 3
- III. A relative maximum at x = 4
- (A) I only
- (B) III only
- (C) I and III only
- (D) II and III only
- (E) I, II, and III

4. For x > 0, f is a function such that $f'(x) = \frac{\ln x}{x}$ and $f''(x) = \frac{1 - \ln x}{x^2}$. Which of the following is

- (A) f is decreasing for x > 1, and the graph of f is concave down for x > e
- (B) f is decreasing for x > 1, and the graph of f is concave up for x > e
- (C) f is increasing for x > 1, and the graph of f is concave down for x > e
- (D) f is increasing for x > 1, and the graph of f is concave up for x > e
- (E) f is decreasing for 0 < x < 1, and the graph of f is concave down for $0 < x < e^{3/2}$

5. The figure above shows the graph of f', the derivative of the function f on the open interval -7 < x < 7. If f' has four zeros on -7 < x < 7, how many relative maxima does f have on -7 < x < 7?

- (A) one
- (B) two
- (C) three
- (D) four
- (E) five

x	0	1	2	3
f''(x)	5	0	-7	4

- _____ 6. The polynomial function f has selected values of its second derivative f'' given in the table above. Which of the following statements must be true?
 - (A) f is increasing on the interval (0,2) (B) f is decreasing on the interval (0,2)
 - (C) f has a local maximum at x = 1 (D) The graph of f has a point of inflection at x = 1 (E) The graph of f changes concavity in the interval (0,2)
- _____7. Let f be a function with a second derivative given by $f''(x) = x^2(x-3)(x-6)$. What are the x-coordinates of the points of inflection of the graph of f?
 - (A) 0 only
- (B) 3 only
- (C) 0 and 6 only
- (D) 3 and 6 only
- (E) 0, 3, and 6 only

Part II: Free Response

Say what you want, but be sure to document and say it correctly with correct documentation.

2011 AB4 Form B

- 10. Consider a differentiable function f having domain of all positive real numbers, and for which it is known that $f'(x) = (4-x)x^{-3}$ for x > 0.
 - (a) If f(1) = 2, write an equation of the tangent line to f(x) at x = 1.
 - (b) Find the *x*-coordinate of the critical point of *f*. Determine whether the point is a relative maximum, a relative minimum, or neither for the function *f*. Justify your answer.
 - (c) Find all intervals on which the graph of f is concave down. Justify your answer.