N	ame	

Favorite Cold Yam Temperature

AP Calculus TEST: 2.1-2.7. NO CALCULATOR

Part I: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question. SHOW ALL WORK/INDICATE ALL METHODS on a SEPARATE SHEET OF PAPER. Number your scratch work.

$$\frac{1}{h \to 0} \frac{\frac{8}{\sqrt[3]{(6+h)+2}} - \frac{8}{\sqrt[3]{6+2}}}{h} = f(6), \text{ for } f(x) = \frac{8}{\sqrt[3]{x+2}}, \qquad f(x) = \frac{8}{\sqrt[3]{x+2$$

$$73(3/x+2)^{4}$$
E) DNE $f'(6) = \frac{-8}{3(38)^{4}} = \frac{-8}{3 \cdot 16}$

 $\sum_{x=0}^{\infty} 2$. If $f(x) = \frac{x^2 + c^2}{x^2 - c^2}$ where c is a constant, then $f'(x) = \frac{c^2 + c^2}{c^2}$

(B)
$$\frac{-2c^2x}{(x^2-c^2)^2}$$

$$(C) \frac{4c^2x}{\left(x^2 - c^2\right)}$$

(D)
$$\frac{2c^2x}{(x^2-c^2)^2}$$

(x-c)					
$\frac{2\times(-2c^2)}{(\chi^2-c^2)^2} = \frac{-4c^2\times}{(\chi^2-c^2)^2}$	х	f(x)	f'(x)	g(x)	g'(x)
(X-E)	1	3	-2	$\frac{5}{2}$	13
	2	-3	5	5	$-\frac{1}{2}$

The table above gives the values for differentiable functions f(x) and g(x) & their derivatives at selected

values. Use the table to answer questions 3, 4, and 5.

$$h'(x) = 3(f(2x))^2 \cdot f'(2x) \cdot 2 \quad h'(1) = 6(f(2))^2 \cdot f'(2)$$
3. If $h(x) = [f(2x)]^3$, use the table to find $h'(1) = (6(-3)^2 \cdot 5) = (6 \cdot 9 \cdot 5) = 30 \cdot 9 = 270$

(A) 54 (B) -90 (C) 135

(D) 270

4. If
$$K(x) = \sqrt[3]{f(x) + 2g(x)}$$
, find $K'(1) = \frac{f(x) + 2g(x)}{3(\sqrt[3]{4(x) + 2g(x)})^2} = \frac{-2 + 2(13)}{3(\sqrt[3]{3 + 2(\frac{x}{2})})^2} = \frac{24}{3 \cdot 4} = \frac{2}{3}$

 $(A) -2 \qquad (B) 2 \qquad (C) -\frac{3}{2} \qquad (D) \frac{3}{2}$ (E) 0

5. For $1 \le x \le 2$, which of the following must be true? VI. $g(c) = \frac{7}{2}$ for some $c \in (1,2)$ $g(1) = \frac{5}{2} < 3 < 5 = g(2)$, so $g(1) = \frac{5}{2} < 3 < 5 = g(2)$, so $g(1) = \frac{5}{2} < 3 < \frac{5}{2} = g(1)$, so $g(1) = \frac{5}{2} < \frac{5}{2} < \frac{5}{2} < \frac{5}{2} = \frac{5}{2} < \frac{5$

VIII. f(a) = g(a) for some $a \in (1,2)$

(A) I only

(B) II only (C) I and II only

(D) II and III only

(E) I, II, and III

$$y = \frac{3}{f(x)}, \quad y = \frac{3}{\cot x}, \quad y = 3 \tan x$$

$$= \frac{3}{y} = f(x), \text{ find } \frac{dy}{dx}\Big|_{x = \frac{11\pi}{6}} = 3 \sec^{2} x$$
(A) 0 (B) 4 (C) 12 (D) $3\sqrt{3}$ (E) $-\sqrt{3}$

_____ 7. Let $f(x) = 2\sin x \cos x$ for $0 \le x < t$. Find all the values for which f'(x) = 1.

- (A) I only (B) II only (C) I, II only
- (D) I, III only
- (E) II, and III only
- 8. If $h(x) = x^2 g'(x)$, where $g(x) = \frac{x + \sec x}{x}$, then what is the slope of the secant line on the

- 9. If $\frac{d}{dx} \left[\left(\frac{x+3}{2x-1} \right)^4 \right] = 4 \left(\frac{(2x-1)(1)-(x+3)(2)}{(2x-1)^2} \right) = 4 \frac{(x+3)^3 [2x-1-2x-4]}{(2x-1)^5} = -28 \frac{(x+3)^3}{(2x-1)^5}$
 - (A) $-28\frac{(x+3)^3}{(2x-1)^3}$ (B) $-28\frac{(x+3)^3}{(2x-1)^5}$ (C) $28\frac{(x+3)^3}{(2x-1)^5}$ (D) $-20\frac{(x+3)^3}{(2x-1)^3}$ (E) $20\frac{(x+3)^3}{(2x-1)^5}$
- 10. If $f(1) = \frac{\pi}{4}$ and f'(1) = 3, find the equation of the tangent line to $h(x) = \cot(f(x))$ at x = 1.
- (A) 6x y = 7 (B) 6x + y = 7 (C) 6x y = -7
- (D) -6x + y = 2 (E) 6x y = 7

$$h'(x) = -csc^{2}(f(x)) \cdot f'(x), h'(1) = -f'(1)[csc(f(x))]^{2}$$

 $= (3)(\sqrt{12})^{2} = -62m$
 $h(1) = cot(f(1)) = cot(f(1)) = (1)[f(1)]$

x	f(x)	f'(x)	g(x)	g'(x)
1	-3	2	-1	$\frac{1}{2}$
2	1	-2	3	$\frac{1}{4}$
3	5	4 <i>a</i>	0	$\frac{1}{6}$

 $(4a)(\frac{1}{4}) = \frac{-1}{(\frac{1}{4})(-2)}$

11. The table above gives the values for differentiable functions f(x) and g(x) & their derivatives at selected values. Find the value of a (if it exists) so that the tangent lines to $\int_{A} (x,y) \operatorname{diag} g(y,x) \operatorname{diag}$ f(g(x)) and g(f(x)) are perpendicular at x = 2.

$$\frac{d}{dx} \left[f(g(x)) \right] > \frac{d}{dx} \left[g(f(x)) \right] (A) - \frac{1}{2}$$

$$m_1 = f'(g(x)) \cdot g'(x) \qquad g'(f(x)) \cdot f'(x) = m_2$$

$$(D) -5$$

$$\frac{d^{50}}{d^{50}}[\sin 3x] =$$

$$\frac{1}{4} = \frac{1}{2!(4e) \cdot \frac{1}{4}}$$

14. If $cos(xy) = \frac{\sqrt{3}}{2}$, find $\frac{d^2y}{dx^2}$.

(A) $\frac{1}{\sin(xy)}$ (B) $-\frac{1}{\sin(xy)}$ (C) 0 (D) $\frac{2y}{x^2}$ (E) $-\frac{2y}{x^2}$ (E)

rabid fans entered Unicorn stadium at different times is given in the table below. Based on the data below, which of the following statements is accurate?

time (sec)	0	25	50	75	100	180
R (people/sec)	70	120	220	340	300	160

I. At t = 2 seconds, the instantaneous rate of change of R is approximately 2 people/sec²

 \times II. At t = 24 seconds, the instantaneous rate of change of R is approximately 8 people/sec²

 \times III. At t = 75 seconds, more people are entering Unicorn stadium that at any other time during the first 1.5 minutes.

(A) I only (B) II only (C) I and III only (D) I and II only (E) I, II, and III $\pm \frac{120-70}{25-0} = \frac{50}{25} = 2 \text{ ppl/se}^2$ $\pm \frac{120-70}{25-0} = \frac{50}{25} = 2 \text{ ppl/se}^2$ $\pm \frac{120-70}{25-0} = \frac{50}{25} = 2 \text{ ppl/se}^2 \neq 8 \text{ ppl/se}^2$ $+ \frac{1}{25-0} \frac{120-70}{25-0} = \frac{50}{25} = 2 \text{ ppl/se}^2 \neq 8 \text{ ppl/se}^2$ $+ \frac{1}{25-0} \frac{120-70}{25-0} = \frac{50}{25} = 2 \text{ ppl/se}^2 \neq 8 \text{ ppl/se}^2$ $+ \frac{1}{25-0} \frac{120-70}{25-0} = \frac{50}{25} = 2 \text{ ppl/se}^2 \neq 8 \text{ ppl/se}^2$ $+ \frac{1}{25-0} \frac{120-70}{25-0} = \frac{50}{25} = 2 \text{ ppl/se}^2 \neq 8 \text{ ppl/se}^2$ $+ \frac{1}{25-0} \frac{120-70}{25-0} = \frac{50}{25} = 2 \text{ ppl/se}^2 = 2 \text{ pp$ THE. The rate at t=75 see is the largest rate in the table, but there is data in between the data points given, about which we know nothing. Who's to say at t=76 see, people weren't rushing it at 350 pp/sec?

Part II: Free Response—Show all set ups, use correct notation, indicate your methods, and answer in complete math/English sentences (with units) when appropriate.

- 16. An elephant moves along the x-axis so that at any time $t \in [0,2\pi]$ seconds, its position, in feet, is given by $x(t) = 2t \sin t + 2\cos t + t^2$.
- (a) Determine if the speed of the elephant is increasing or decreasing at $t = \frac{\pi}{2}$ seconds. Justify your

```
Since V(\overline{L}) = 2 \sin t + 2 \cos t - 2 \sin t + 2 t

V(t) = 2 \cos t + 2 t
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t + 2 t)
V(\overline{L}) = (2 + 2 \cos t
answer.
                      x"(t)=v'(t)=a(t)= 2 cost -2+sint+2
                                                                                                                                                         a(\frac{1}{6}) = (2)(45\frac{1}{6}) - (2)(\frac{1}{6})(\sin^{6}) + 2
= (2)(\frac{1}{2}) - (\frac{1}{3})(\frac{1}{2}) + 2
```

(b) For what values of $t \in (0, 2\pi)$ is the elephant at rest? Show the work that leads to your answer.

V/E)=0 2tcost + 2t =0 2t(cost +1)=0 2t=0, cost+1=0 t=0 sec, cost=-1 t=0 $\notin (0,2\pi)$ $t=\pi$ sec So the elephant is at rest at t= Tr seconds. Vs

(c) On the interval $0 \le t \le 2\pi$ seconds, how far does the elephant travel? Justify your answer.

$$V(t) = 2t(\cos t + i)$$

Since 2+>0 and cost+1>0 for 05 t 5 2TT V(+) = 0 for all t \([0,217] \(\frac{1}{6} \) So the elephant is Not moving left at any time. This mean's the pachyderm's displacement is also

its distance travelled

 $X(t) = 2t \sin t + 2 \cos t + t^2$

 $((t) = 2t \sin t + 2\cos t + t)$ $+ Displacement = \chi(ztr) - \chi(0)$ $= (4\pi \sin 2\pi + 2\cos 2\pi + (2\pi)^{2}) - (z(0)\sin 0 + 2\cos 0 + o^{2})$ $= 0 + z + 4\pi^{2} - o - z - o$ $= 4\pi^{2} + 6$ units on (b) & (c) \(\frac{1}{9}\)
Seconds fl