AP Calculus TEST: 2.1-2.7. NO CALCULATOR

Part Eins: Vielen choices—Put the correct CAPITAL letter in the space to the left of each question.

____1. If $x^2 + y^2 = 25$, what is the value of $\frac{d^2y}{dx^2}$ the point (4,3)?

(A)
$$-\frac{7}{27}$$

(B)
$$\frac{25}{27}$$

(C)
$$\frac{3}{4}$$

(A)
$$-\frac{7}{27}$$
 (B) $\frac{25}{27}$ (C) $\frac{3}{4}$ (D) $-\frac{25}{27}$ (E) $\frac{7}{27}$

(E)
$$\frac{7}{27}$$

_____2. If $f(x) = (x-1)(x^2+2)^3$, then f'(x) =

(A)
$$6x(x^2+2)^2$$

(B)
$$6x(x-1)(x^2+2)^2$$

(A)
$$6x(x^2+2)^2$$
 (B) $6x(x-1)(x^2+2)^2$ (C) $(x^2+2)^2(x^2+3x-1)$

(D)
$$(x^2+2)^2(7x^2-6x+2)$$
 (E) $-3(x-1)(x^2+2)^2$

(E)
$$-3(x-1)(x^2+2)^{-1}$$

_____3. If $y = x^2 \sin(2x)$, then $\frac{dy}{dx} =$

(A)
$$2x\cos(2x)$$

(B)
$$4x\cos(2x)$$

(A)
$$2x\cos(2x)$$
 (B) $4x\cos(2x)$ (C) $2x\left[\sin(2x)+\cos(2x)\right]$

(D)
$$2x \left[\sin(2x) - x\cos(2x) \right]$$
 (E) $2x \left[\sin(2x) + x\cos(2x) \right]$

(E)
$$2x \left[\sin(2x) + x\cos(2x) \right]$$

4. What is the slope of the line tangent to the curve $3y^2 - 2x^2 = 6 - 2xy$ at the point (3,2)?

(B)
$$\frac{4}{9}$$

(C)
$$\frac{7}{9}$$

(D)
$$\frac{6}{7}$$

(A) 0 (B)
$$\frac{4}{9}$$
 (C) $\frac{7}{9}$ (D) $\frac{6}{7}$ (E) $\frac{5}{3}$

 $\underline{\qquad}$ 5. $\frac{d}{dx} \left[\cos^2 \left(x^3 \right) \right] =$

(A)
$$6x^2 \sin(x^3)\cos(x^3)$$
 (B) $6x^2 \cos(x^3)$ (C) $\sin^2(x^3)$

(B)
$$6x^2 \cos\left(x^3\right)$$

(C)
$$\sin^2(x^3)$$

(D)
$$-6x^2 \sin(x^3)\cos(x^3)$$

(D)
$$-6x^2 \sin(x^3)\cos(x^3)$$
 (E) $-2\sin(x^3)\cos(x^3)$

_____6. An equation of the line tangent to the graph of $y = \frac{2x+3}{3x-2}$ at the point (1,5) is

(A)
$$-2x + 3y = 13$$

(B)
$$x - 13y = 64$$

(B)
$$x-13y=64$$
 (C) $13x+y=18$ (D) $13x-y=8$ (E) $x+13y=66$

(D)
$$13x - y = 8$$

(E)
$$x+13y=66$$

(A)
$$\sec^2 x + \cot^2 x$$

(B)
$$\sec x \tan x + \csc^2 x$$

(C)
$$\sec x \tan x - \csc^2 x$$

(A)
$$\sec^2 x + \cot^2 x$$
 (B) $\sec x \tan x + \csc^2 x$ (C) $\sec x \tan x - \csc^2 x$ (D) $\sec^2 x + \csc x \cot x$

$$x$$
 (E) 5

_____ 8. If $x^3 + 3xy + 2y^3 = 17$, then in terms of x and y, $\frac{dy}{dx} =$

(A)
$$-\frac{x^2 + y}{x + 2y^2}$$
 (B) $-\frac{x^2 + y}{x + y^2}$ (C) $-\frac{x^2 + y}{x + 2y}$ (D) $-\frac{x^2 + y}{2y^2}$ (E) $-\frac{x^2}{1 + 2y^2}$

(B)
$$-\frac{x^2 + y}{x + y^2}$$

$$(C) - \frac{x^2 + y}{x + 2y}$$

(D)
$$-\frac{x^2 + y}{2y^2}$$

(E)
$$-\frac{x^2}{1+2y^2}$$

Part Los Dos: Frei Response.

- 10. An elephant moves along a vertical line and has a position equation y(t) = (2t-1)(t-4) with y(t) measured in furlongs (about 210 meters) and t measured in heleks (about 3.3 seconds) and $t \ge 0$. Answer the following. Be sure to include units in your final answer(s), lest you lose valuable points and class rank slots.
 - (a) What is the initial position of the elephant?
 - (b) When is the first time the elephant is at the zero position?
 - (c) What is the elephant's displacement on the interval from t = 0 to t = 1 heleks? Explain what that number means in terms of the elephant's starting position.
 - (d) What is the elephant's average velocity on the interval from t = 0 to t = 1 heleks?
 - (e) What is the elephant's velocity at t = 1 heleks? Write a sentence explaining the meaning of your answer in terms of the elephant's position.
 - (f) What is the elephant's acceleration at t = 1 heleks?
 - (g) At what time (in heleks) does the elephant change directions? Justify.
 - (h) At t = 1 heleks, is the speed of the elephant increasing or decreasing? Justify.

