AP Calculus TEST: 2.1-2.5 NO CALCULATOR

Part I: SHORT ANSWER (ALL WORK MUST BE SHOWN FOR CREDIT. ANY CORRECT ANSWER IN THE ABSENCE OF SUPPORTING WORK WILL BE COUNTED INCORRECT! GIVE **SIMPLIFIED, EXACT ANSWERS!**)

1. If $f(x) = (3x^2 - 4x - 1)\tan x$, then f'(0) =

2. If $f(x) = 3x^{1/3}(2x+1)$, find the values of x for which f is differentiable, that is, find the domain of f'(x). Be sure to show your computation of f'(x) and analysis.

3. If $f(x) = e + \pi x$, then $f'(\sqrt{2}) =$

4. The following limit gives f'(c) for some function f(x) at some x = c. Identify f(x), x = c, then $\lim_{h \to 0} \frac{3\csc\left(\frac{\pi}{2} + h\right) - 3}{h} =$ find f'(x), and finally f'(c).

5. If
$$f(x) = \sqrt[3]{3x}$$
, then $f'(\sqrt{3}) =$

6. Let
$$f(x) = \begin{cases} cx + d, & x \le 2 \\ x^2 - cx, & x > 2 \end{cases}$$
, where c and d are constants. If f is differentiable at $x = 2$, what is the value of $c + d$?

7. A particle moves along the *x*-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 - 21t^2 + 72t - 53$. At what time *t* is the particle at rest?

8. If
$$f(x) = (2x-1)\left(\frac{x^2-2}{5x-7}\right)$$
, then $f'(0) =$

Part II: FREE RESPONSE (SHOW ALL SET-UPS. INCLUDE UNITS IN ALL ANSWERS. NOTATION, NOTATION, NOTATION. WORK ALL QUESTIONS IN THE SPACE BELOW EACH QUESTION.)

9. A particle moves along a vertical number line and has a position equation for $t \ge 0$ of $y(t) = (3t-1)(t-3)$ with $y(t)$ measured in feet and t measured in seconds.
(a) What is the initial position of the particle?
(b) When is the first time the particle is at $y = 0$ on the number line?
(c) What is the particle's displacement on the interval from $t = 0$ to $t = 1$ seconds? Explain what this answer means in terms of the particle's starting position.
(d) What is the particle's average velocity on the interval from $t = 0$ to $t = 1$ seconds?

(e) What is the particle's velocity $t = 1$ seconds? Explain what this means in terms of the direction and speed of the particle.	
(f) What is the particle's acceleration at $t = 1$ seconds? Explain what this means in terms of the velocity of the particle.	of
(g) At what time does the particle change direction? Justify.	
(h) At $t = 1$ seconds, is the speed of the particle increasing or decreasing? Justify.	