NO CALCULATOR

Part I: SHORT ANSWER (ALL WORK MUST BE SHOWN FOR CREDIT. ANY CORRECT ANSWER IN THE ABSENCE OF SUPPORTING WORK WILL BE COUNTED INCORRECT! GIVE SIMPLIFIED, EXACT ANSWERS!)

1. If $f(x) = (3x^2 - 4x - 1)\tan x$, then $f'(0) = \begin{cases} f(x) = (6x - 4) + (3x^2 - 4x - 1) + (3x^2 - 4x - 1$

AP Calculus TAKE HOME TEST: 4.1-4.5

2. If $f(x) = 3x^{1/3}(2x+1)$, find the values of x for which f is differentiable, that is, find the domain of f'(x). Be sure to show your computation of f'(x) and analysis.

$$f(x) = x^{-\frac{1}{3}}(2x+1) + 3x^{\frac{1}{3}}(2)$$

$$f(x) = \frac{2x+1}{3\sqrt{x^2}} + 63\sqrt{x}$$

$$f(x) = \frac{3\sqrt{x}}{3\sqrt{x^2}} + \frac{3\sqrt{x}}{3\sqrt{x^2}} + \frac{3\sqrt{x}}{3\sqrt{x^2}} + \frac{3\sqrt{x}}{3\sqrt{x}} + \frac{3\sqrt{x$$

3. If $f(x) = e + \pi x$, then $f'(\sqrt{2}) =$

$$f'(x) = \pi$$

$$f'(xz) = \pi$$

4. The following limit gives f'(c) for some function f(x) at some x = c. Identify f(x), x = c, then find

$$f'(x), \text{ and finally } f'(c).$$

$$\lim_{h \to 0} \frac{3\csc\left(\frac{\pi}{2} + h\right) - 3}{h} =$$

$$f(x) = 3 \csc \times$$

$$f'(x) = -3 \csc \times \cot \times$$

5. If
$$f(x) = \sqrt[3]{3x}$$
, then $f'(\sqrt{3}) =$

$$f(x) = \sqrt[3]{3} \times \sqrt[4]{3}$$

$$f(x) = \sqrt[3]{3} \times \sqrt[2]{3}$$

6. Let
$$f(x) =\begin{cases} cx + d, & x \le 2 \\ x^2 - cx, & x > 2 \end{cases}$$
, where c and d are constants. If f is differentiable at $x = 2$, what is the value of $c + d$?

$$\begin{cases} cx + d, & x \le 2 \\ x^2 - cx, & x > 2 \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 4 - 2c \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4 \end{cases}$$

$$\begin{cases} c + d = 2 - 4$$

7. A particle moves along the x-axis so that at time $t \ge 0$ its position is given by $x(t) = 2t^3 - 21t^2 + 72t - 53$. At what time t is the particle at rest?

$$X/E = V(E) = 6E^2 - 42E + 72 = 0$$

 $6(E^2 - 7E + 12) = 0$
 $6(E^2 - 7E + 12) = 0$
 $6(E^2 - 7E + 12) = 0$
 $E = 4se_1 = 3se_2$

8. If
$$f(x) = (2x-1)\left(\frac{x^2-2}{5x-7}\right)$$
, then $f'(0) = f'(x) = 2\left(\frac{x^2-2}{5x-7}\right) + (2x-1)\left(\frac{5x-7}{2x}\right) - (\frac{x^2-2}{2x}\right) + (-1)\left(\frac{-5(-2)}{49}\right)$

$$f'(0) = 2\left(\frac{2}{7}\right) + (-1)\left(\frac{-5(-2)}{49}\right)$$

$$f'(0) = \frac{4}{7} - \frac{10}{49}$$

Part II: FREE RESPONSE (SHOW ALL SET-UPS. INCLUDE UNITS IN ALL ANSWERS. NOTATION, NOTATION, NOTATION. WORK ALL QUESTIONS IN THE SPACE BELOW EACH QUESTION.)

- 9. A particle moves along a vertical number line and has a position equation for $t \ge 0$ of v(t) = (3t-1)(t-3) with y(t) measured in feet and t measured in seconds.
- (a) What is the initial position of the particle?

$$y(t) = (3t-1)(t-3) = 3t^2 - 10t + 3$$

$$y(0) = 3t + 3$$

(b) When is the first time the particle is at y = 0 on the number line?

$$y(t) = (3t-1)(t-3) = 0$$

 $t = \frac{1}{3}, t = 3$
 $so t = \frac{1}{3} sec$

(c) What is the particle's displacement on the interval from t = 0 to t = 1 seconds? Explain what this answer means in terms of the particle's starting position.

$$y(t) = (3t-1)(t-3) = 3t^2-10t+3$$

Displacement = $y(1) - y(0) = -4-3 = -7ft$

From t=0 to t=1 seconds, the particle ended up 7ft 13tLow where he started.

(d) What is the particle's average velocity on the interval from $t=0$ to $t=1$ seconds?

$$y(t) = (3t-1)(t-3) = 3t^2-10t+3$$

Avg velocity = $\frac{y(1)-y(0)}{1-0}$
= $-\frac{7}{1}$
= $-\frac{7}{1}$

(e) What is the particle's velocity t = 1 seconds? Explain what this means in terms of the direction and speed of the particle.

speed of the particle.

$$y(t) = (3t-1)(t-3) = 3t^2 - 10t + 3$$
 $y'(t) = v(t) = 3(t-3) + (3t-1)(1) = 6t - 10$
 $y'(1) = -4 + 4 + 5 = 0$

At $t = 1$ see, the particle is nowing Down at 4th per second.

(f) What is the particle's acceleration at t = 1 seconds? Explain what this means in terms of the velocity of the particle.

(g) At what time does the particle change direction? Justify.

(h) At t = 1 seconds, is the speed of the particle increasing or decreasing? Justify.

