AP Calculus TEST: 2.1-2.4, NO CALCULATOR

Part I: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question.

1. The graph of a function h is shown above. Which of the following could be the graph of h', the derivative of h?

(A)

(D)

(E)

- 2. In the xy-plane, the line 2x y = k, where k is a constant, is tangent to the graph of $y = \frac{3}{2}x^2 4x + 1$. What is the value of k?
 - (A) 2
- (B) -2
- (C) 3
- (D) 5
- (E) -1

$$f(x) = \begin{cases} 2cx + d & \text{for } x \le -1\\ x^2 + cx & \text{for } x > -1 \end{cases}$$

- 3. Let f be the function defined above, where c and d are constants. If f is differentible at x = -1, what is the value of $c \cdot d$?
 - (A) 1
- (B) 2
- (C) 4 (D) 6
- (E) 8

4. If $y = \frac{3x+2}{2x+3}$, then $\frac{dy}{dx} =$ (A) $\frac{13}{(2x+3)^2}$ (B) $\frac{-13}{(2x+3)^2}$ (C) $\frac{-1}{(2x+3)^2}$ (D) $\frac{5}{(2x+3)^2}$ (E) $\frac{-5}{(2x+3)^2}$

 $\int_{h\to 0} \frac{2\cos\left(\frac{7\pi}{6} + h\right) - 2\cos\left(\frac{7\pi}{6}\right)}{h} = \frac{2\cos\left(\frac{7\pi}{6} + h\right) - 2\cos\left(\frac{7\pi}{6}\right)}{h}$

- Graph of f
- 6. The graph of a function f is shown above. At which value(s) of x is f not differentiable? I. x = a II. x = b III. x = d
 - (B) I & II only (B) II & III only (C) I & III only (D) I, II, & III (A) I only

$$g(x) = \begin{cases} x+2, & x \le 3 \\ x^2 - 4, & x > 3 \end{cases}$$

7. Let f be the function given above. Which of the following statements are true about g?

- I. $\lim_{x \to 3} g(x)$ exists
- II. g is continuous at x = 3
- III. g is differentiable at x = 3
 - (A) None
- (B) I only
- (C) II only (D) I & II only
 - (E) I, II, & III

8. If $f(x) = (x-2)\sin x$, then f'(0) =(A) -3 (B) -2 (C) 0 (D) 2

- (E) 3

9. If f(x) = 2-4|x+6| for all x, then the value of the derivative f'(x) at x=6 is

- $(A) -4 \qquad (B) 0 \qquad (C) 4$
- (D) 2
- (E) DNE

Part II: Free Response—Do all work in the space provided.

10. If
$$g(x) = \frac{2}{3}x^3 + \frac{1}{2}x^2 - x + 5$$

(a) Let $P(x) = g'(x)$. Find $P(x)$ and $P'(x)$.

(a) Let
$$P(x) = g'(x)$$
. Find $P(x)$ and $P'(x)$.

(b) Find
$$P(1)$$
 and $P'(1)$.

(c) Find the equation of the tangent line, in Taylor Form, of
$$P(x)$$
 at $x = 1$.

(d) Find the equation of the <u>normal</u> line, in Taylor Form, of P(x) at x = 1.

(e) The equation of the normal line to P(x) at x = 1 intersects the graph of P(x) at another x-value. Find this *x*-value. Show the work that leads to your answer.