AP Calculus TEST: 2.1-2.4, NO CALCULATOR

Part Ein: Multiple Choice—Put the correct CAPITAL letter in the space to the left of each question.

- 1. In the xy-plane, the line x + y = k, where k is a constant, is tangent to the graph fo $f(x) = x^2 + 3x + 1$. What is the value of k?
- (A) -3 (B) -2 (C) -1
- (D) 0
- (E) 1

$$g(x) = \begin{cases} ax^2 + bx + 2, & \text{for } x \le 1\\ \frac{2b}{x} - a & \text{for } x > 1 \end{cases}$$

- 2. Let g be the function defined above, where a and b are constants. If g is differentible at x = 1, what is the value of a?

- (A) $-\frac{3}{4}$ (B) $\frac{1}{2}$ (C) $\frac{3}{4}$ (D) $-\frac{1}{2}$ (E) No such value exists

_____3. If $y = \frac{3x-4}{5x+7}$, then $\frac{dy}{dx} =$ (A) $\frac{30x-1}{(5x+7)^2}$ (B) $\frac{2x+3}{(5x+7)^2}$ (C) $-\frac{41}{(5x+7)^2}$ (D) $\frac{41}{(5x+7)^2}$ (E) $-\frac{1}{(5x+7)^2}$

 $\underbrace{\frac{4\cos\left(\frac{3\pi}{2} + h\right) - 4\cos\frac{3\pi}{2}}{4\cdot \lim_{h \to 0} \frac{h}{h}} = (A) - 4 \qquad (B) 4 \qquad (C) 0 \qquad (D) - 1$ (E) DNE

5. The graph of a function f is shown above. At which value(s) of x is f not differentiable? (C) *a* and *d* (B) *a* and *b* (D) *b* and *d* (E) a, b, and d

$$h(x) = \begin{cases} 4x - 3, & x \le 2\\ \frac{3}{2}x^2 - 2x + 3, & x > 2 \end{cases}$$

I.
$$\lim_{x\to 2} h(x)$$
 exists

III. h is differentiable at
$$x = 2$$

7. Which of the following is the equation of the normal line to the function
$$f(x) = x^2 + 3x - 5$$
 at $x = 1$?

(A)
$$5x - y = -4$$

(B)
$$x - 5y = -4$$

$$(C) 5x + y = -4$$

(D)
$$x + 5y = -4$$

(A)
$$5x - y = -4$$
 (B) $x - 5y = -4$ (C) $5x + y = -4$ (D) $x + 5y = -4$ (E) $-5x + y = -4$

8. If
$$f(x) = x^2 \sin(x) - \sqrt{x^3}$$
, then $f'(0) =$
(A) -2 (B) -1 (C) 0 (D) 1 (E) 2

_____9. If
$$f(x) = x^3 + kx^2 + x - 3$$
, and if $f'(-2) = 17$, then $k =$

$$(A) -2$$

(A)
$$-2$$
 (B) -1 (C) 0 (D) 1

II. h is continuous at x = 2

Part Dos: Free Response—Do all work in the space provided. Show all steps. Use proper notation.

10. If
$$f(x) = \frac{2}{3}x^3 + \frac{3}{2}x^2 - x + 5$$

(a) Let Q(x) = f'(x). Find Q(x) and Q'(x).

(b) Find
$$\lim_{x \to \infty} \frac{Q'(x)}{Q(x)} =$$

(c) Find Q(-2) and Q'(-2).

(d) Find the equation of the <u>tangent</u> line, in Taylor Form, of Q(x) at x = -2.

(e) Find the equation of the <u>normal</u> line, in Taylor Form, of $Q(x)$ at $x = -2$.	
(c) , c- $\mathcal{L}(w)$	
(f) The equation of the normal line to $O(x)$ at $x=2$ intersects the graph of $O(x)$ at another x value.	ind
(f) The equation of the normal line to $Q(x)$ at $x = -2$ intersects the graph of $Q(x)$ at another x-value. Figure 1.	IIIu
this <i>x</i> -value. Show the work that leads to your answer.	